

இந்த கையேட்டில் கீழ் கண்ட பகுதிகள் உள்ளன:
$>$ Book Back Question -
(1 Mark).

இந்த கையேட்டில் உள்ளவை வெறும் மாதிரிப் பக்கங்களே, கீழே உள்ள வழிகளில் எங்கள் முழுமையான புத்தகங்களை நீங்கள் வாங்கலாம்.

Main Book	Practice Book	Special book
300/-	100/-	100/-

For Bulk Orders, Please Contact Our District Co-ordinators

Ariyalur: 7094441952, 9843427724
Chennai: 7094441953, 7868911969
Chengalpet: 7397774505, 9600526295
Coimbatore: 7397774501, 8973711777
Cuddalore: 7397774502, 9003557799
Dharmapuri: 7397774503, 9787144519
Dindigul: 7094441954, 9150078022
Erode: 7397774504, 9788831237
Kallakuruchi: 7094441965, 9943153202
Kanchipuram: 7397774505, 9600526295
Kanniyakumari:7397774506, 9486679747
Karur: 7094441955, 9842964646
Krishnagiri:7094441956, 9543811011
Madurai: 7094441957, 9843349892
Mayiladuthurai: 8680810626, 9789175104
Nagapattinam: 7094441966, 7598868760
Namakkal: 7094441958, 7418176317
Perambalur: 7397774509, 9003557799
Pudukottai: 7397774510, 9597402010

Ramanathapuram: 7094441959, 9150854043
Ranipet: 7094441964, 9994311090
Salem: 7397774511, 9952499928
Sivaganga: 7397774512, 7708672601
Tenkasi: 7397774515, 9500806359
Thanjavur: 7094441960, 9940333073
Theni: 7397774513, 7904657547
Thirupathur:7094441961, 9786315453
Thiruvallur: 7397774514, 8667604216
Thiruvarur:7094441962, 7598868760
Thoothukudi:7397774507, 9487771682
Tiruchirappalli: 9626053030, 9787609090
Thuraiyur: 9994595695, 9965894470
Tirunelveli: 7397774515, 9500806359
Tiruppur: 73977745249788776767
Tiruvannamalai: 7094441963, 9952782495
Vellore: 7094441964, 9994311090
Villuppuram: 7094441965, 9943153202
Virudhunagar: 7397774516, 8189844465

You can also buy our books in Book Shops and Stationaries near you.
------ For Individual orders

Call us: 9787609090,9787201010
VPP Order: You can give SMS to 9787104040 to get books by VPP
Online Purchase: www.bookade.com, Amazon

PART - I - 1 Mark Questions
 1. Relations and Functions

Text Book Questions

1. If $n(A \times B)=6$ and $A=\{1,3\}$ then $n(B)$ is

SEP-21
(A) 1
(B) 2
(C) 3
(D) 6
2. $A=\{a, b, p\}, B=\{2,3\}, C=\{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is

PTA-3
(A) 8
(B) 20
(C) 12
(D) 16
3. If $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ then state which of the following statement is true

SEP-20
(A) $(\boldsymbol{A} \times \boldsymbol{C}) \subset(B \times D)$
(B) $(B \times D) \subset(A \times C)$
(C) $(A \times B) \subset(A \times D)$
(D) $(D \times A) \subset(B \times A)$
4. If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set B, then the number of element in B is
(A) 3
(B) 2
(C) 4
(D) 8
5. The range of the relations $R=\left\{\left(x, x^{2}\right) \mid x\right.$ is a prime number less than 13$\}$ is

PTA-2, JUL-22
(A) $\{2,3,5,7\}$
(B) $\{2,3,5,7,11\}$
(C) $\{4,9,25,49,121\}$
(D) $\{1,4,9,25,49,121\}$
6. If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then (a, b) is

PTA-6, MAY-22
(A) $(2,-2)$
(B) $(5,1)$
(C) $(2,3)$
(D) $(3,-2)$
7. Let $n(A)=m$ and $n(B)=n$ then the total number of non-empty relations that can be defined from A to B is
(A) m^{n}
(B) n^{m}
(C) $2^{m n}-1$
(D) $2^{m n}$
8. If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of a and b respectively.
(A) $(8,6)$
(B) $(8,8)$
(C) $(6,8)$
(D) $(6,6)$
9. Let $A=\{1,2,3,4\}$ and $B=\{4,8,9,10\}$. A function $f: A \rightarrow B$ given by $f=\{(1,4),(2,8),(3,9),(4,10)\}$ is a
(A) Many-one function
(B) Identity function
(C) One-to-one function
(D) Into function
PTA-4
10. If $f(x)=2 x^{2}$ and $g(x)=\frac{1}{3 x}$, then $f \circ g$ is
(A) $\frac{3}{2 x^{2}}$
(B) $\frac{2}{3 x^{2}}$
(C) $\frac{2}{9 x^{2}}$
(D) $\frac{1}{6 x^{2}}$
11. If $f: A \rightarrow B$ is a bijective function and if $n(B)=7$, then $n(A)$ is equal to

PTA-2
(A) 7
(B) 49
(C) 1
(D) 14
12. Let f and g be two functions given by
$f=\{(0,1),(2,0),(3,-4),(4,2),(5,7)\}$
$g=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$ then the range of $f \circ g$ is
(A) $\{0,2,3,4,5\}$
(B) $\{-4,1,0,2,7\}$
(C) $\{1,2,3,4,5\}$
(D) $\{0,1,2\}$
13. Let $f(x)=\sqrt{1+x^{2}}$ then
(A) $f(x y)=f(x) \cdot f(y)$
(B) $f(x y) \geq f(x) \cdot f(y)$
(C) $\boldsymbol{f}(\boldsymbol{x} \boldsymbol{y}) \leq \boldsymbol{f}(\boldsymbol{x}) \cdot \boldsymbol{f}(\boldsymbol{y})$
(D) None of these
14. If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha x+\beta$ then the values of α and β are
(A) $(-1,2)$
(B) $(2,-1)$
(C) $(-1,-2)$
(D) $(1,2)$
PTA-6
15. $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
(A)linear
(B) cubic
(C) reciprocal
(D) quadratic

Creative MCQ

1. Let $f(x)=x^{2}-x$, then $f(x-1)-f(x+1)$ is

SEP-20
(A) $4 x$
(B) $2-2 x$
(C) $2-4 x$
(D) $4 x-2$
2. If $n(A)=p, n(B)=q$ then the total number of relations that exist between A and B is
(A) 2^{p}
(B) 2^{q}
(C) 2^{p+q}
(D) $2^{p q}$
3. Given $f(x)=(-1)^{x}$ is a function from \mathbb{N} to \mathbb{Z}. Then the range of f is
(A) $\{1\}$
(B) \mathbb{N}
(C) $\{1,-1\}$
(D) \mathbb{Z}
4. The given diagram represents
(A) an onto function
(B) a constant function
(C) an one-one function
(D) not a function

PTA-3

PTA-6

2. Numbers and Sequences

Text Book Questions

1. Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that $a=b q+r$, where r must satisfy
(A) $1<r<b$
(B) $0<r<b$
(C) $0 \leq r<b$
(D) $0<r \leq b$
2. Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are

PTA-5, SEP-20
(A) $0,1,8$
(B) $1,4,8$
(C) $0,1,3$
(D) $1,3,5$
3. If the HCF of 65 and 117 is expressible in the form of $65 m-117$, then the value of m is
(A) 4
(B) 2
(C) 1
(D) 3

MAY-22
4. The sum of the exponents of the prime factors in the prime factorization of 1729 is
(A) 1
(B) 2
(C) 3
(D) 4 SEP-21,PTA-4,JUL-22
5. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(A) 2025
(B) 5220
(C) 5025
(D) 2520
6. $7^{4 k} \equiv$ \qquad $(\bmod 100)$
(A) 1
(B) 2
(C) 3
(D) 4
7. Given $F_{1}=1, F_{2}=3$ and $F_{n}=F_{n-1}+F_{n-2}$ then F_{5} is

SEP-21, MDL
(A) 3
(B) 5
(C) 8
(D) 11
8. The first term of an arithmetic progression is unity and the common difference is 4 . Which of the following will be a term of this A.P.
(A) 4551
(B) 10091
(C) 7881
(D) 13531
9. If 6 times of $6^{\text {th }}$ term of an A.P is equal to 7 times the $7^{\text {th }}$ term, then the $13^{\text {th }}$ terms of the A.P is
(A) 0
(B) 6
(C) 7
(D) 13

PTA-4
10. An A.P consists of 31 terms. It is $16^{\text {th }}$ term is m, then the sum of all the terms of this A.P is
(A) 16 m
(B) 62 m
(C) 31 m
(D) $\frac{31}{2} \mathrm{~m}$

PTA-5
11. In an A.P., the first term is 1 and the common difference is 4 . How many terms of the A.P must be taken for their sum to be equal to 120 ?

MDL
(A) 6
(B) 7
(C) 8
(D) 9
12. If $A=2^{65}$ and $B=2^{64}+2^{63}+2^{62}+\cdots+2^{0}$ which of the following is true?

PTA-6, SEP-20
(A) B is 2^{64} more than A
(B) A and B are equal
(C) B is larger than A by 1
(D) A is larger than B by 1
13. The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \ldots$ is

PTA-2
(A) $\frac{1}{24}$
(B) $\frac{1}{27}$
(C) $\frac{2}{3}$
(D) $\frac{1}{81}$
14. If the sequence $t_{1}, t_{2}, t_{3}, \ldots$. are in A.P then the sequence $t_{6}, t_{12}, t_{18}, \ldots$ is
(A) a Geometric Progression
(B) an Arithmetic Progression
(C) neither an Arithmetic Progression nor a Geometric Progression
(D) a constant sequence
15. The value of $\left(1^{3}+2^{3}+3^{3}+\cdots+15^{3}\right)-(1+2+3+\cdots+15)$ is

PTA-3
(A) 14400
(B) 14200
(C) 14280
(D) 14520

Creative MCQ

1. If t_{n} is the $n^{\text {th }}$ term of an A.P., then $t_{8 n}-t_{n}$ is
(A) $(8 n-1) d$
(B) $(8 n-2) d$
(C) $(7 n-2) d$
(D) $(7 n d)$

MAY-22
2. The sequence $-3,-3,-3$ \qquad is

PTA-1
(A) An A.P only
(B) a G.P only
(C) Neither A.P nor G.P
(D) both A.P and G.P
3. If $2+4+6+\cdots+2 k=90$, then the value of k is
(A) 8
(B) 9
(C) 10
(D) 11
4. If a and b are two positive integers where $a>0$ and b is a factor of a, then HCF of a and b is
(A) b
(B) a
(C) $3 a b$
(D) $\frac{a}{b}$
5. If a, b, c are in A.P then $\frac{a-b}{b-c}$ is equal to
(A) $\frac{a}{b}$
(B) $\frac{b}{c}$
(C) $\frac{a}{c}$
(D) 1

PTA-6

3. Algebra

Text Book Questions

1. A system of three linear equations in three variables is inconsistent if their planes
(A) Intersect only at a point
(B) intersect in a line
(C) Coincides with each other
(D) do not intersect

PTA-1, JUL-22
2. The solution of the system $x+y-3 z=-6,-7 y+7 z=7,3 z=9$ is
(A) $x=1, y=2, z=3$
(B) $x=-1, y=2, z=3$
(C) $x=-1, y=-2, z=3$
(D) $x=1, y=-2, z=3$
3. If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is

PTA-4, MAY-22
(A) 3
(B) 5
(C) 6
(D) 8
4. $\frac{3 y-3}{y} \div \frac{7 y-7}{3 y^{2}}$ is
(A) $\frac{9 y}{7}$
(B) $\frac{9 y^{3}}{21 y-21}$
(C) $\frac{21 y^{2}-42 y+21}{3 y^{3}}$
(D) $\frac{7\left(y^{2}-2 y+1\right)}{y^{2}}$
5. $y^{2}+\frac{1}{y^{2}}$ is not equal to

PTA-6, JUL-22
(A) $\frac{y^{4}+1}{y^{2}}$
(B) $\left(y+\frac{1}{y}\right)^{2}$
(C) $\left(y-\frac{1}{y}\right)^{2}+2$
(D) $\left(y+\frac{1}{y}\right)^{2}-2$
6. $\frac{x}{x^{2}-25}-\frac{8}{x^{2}+6 x+5}$ gives
(A) $\frac{x^{2}-7 x+40}{(x-5)(x+5)}$
(B) $\frac{x^{2}+7 x+40}{(x-5)(x+5)(x+1)}$
(C) $\frac{x^{2}-7 x+40}{\left(x^{2}-25\right)(x+1)}$
(D) $\frac{x^{2}+10}{\left(x^{2}-25\right)(x+1)}$
7. The square root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ is equal to
(A) $\frac{16}{5}\left|\frac{x^{2} z^{4}}{y^{2}}\right|$
(B) $16\left|\frac{y^{2}}{x^{2} z^{4}}\right|$
(C) $\frac{16}{5}\left|\frac{y}{x z^{2}}\right|$
(D) $\frac{16}{5}\left|\frac{x z^{2}}{y}\right|$
8. Which of the following should be added to make $x^{4}+64$ a perfect square
(A) $4 x^{2}$
(B) $16 x^{2}$
(C) $8 x^{2}$
(D) $-8 x^{2}$
9. The solution of $(2 x-1)^{2}=9$ is equal to
(A) -1
(B) 2
(C) $-1,2$
(D) None of these
10. The values of a and b if $4 x^{4}-24 x^{3}+76 x^{2}+a x+b$ is a perfect square are
(A) 100,120
(B) 10,12
(C) $\mathbf{- 1 2 0 , 1 0 0}$
(D) 12,10
11. If the roots of the equation $q^{2} x^{2}+p^{2} x+r^{2}=0$ are the squares of the roots of the equation $q x^{2}+p x+r=0$, then q, p, r are in \qquad
(A) A.P
(B) G. P
(C) Both A.P and G.P
(D) None of these
12. Graph of a linear equation is a

SEP-21, PTA-2
(A) Straight line
(B) circle
(C) parabola
(D) hyperbola
13. The number of points of intersection of the quadratic polynomial $x^{2}+4 x+4$ with the X axis is
(A) 0
(B) 1
(C) 0 or 1
(D) -2
MAY-22

Creative MCQ

1. The G.C.D of a^{m}, a^{m+1}, a^{m+2} is

SEP-21
(A) a^{m}
(B) a^{m+1}
(C) a^{m+2}
(D) 1
2. $\frac{a^{2}}{a^{2}-b^{2}}+\frac{b^{2}}{b^{2}-a^{2}}=$
(A) $a-b$
(B) $a+b$
(C) $a^{2}-b^{2}$
(D) 1
3. The non- diagonal elements in any unit matrix are \qquad MDL
(A) 0
(B) 1
(C) m
(D) n
4. The LCM of $x^{3}-a^{3}$ and $(x-a)^{2}$ is
(A) $\left(x^{3}-a^{3}\right)(x+a)$
(B) $\left(x^{3}-a^{3}\right)(x-a)^{2}$
(C) $(x-a)^{2}\left(x^{2}+a x+a^{2}\right)$
(D) $(x+a)^{2}\left(x^{2}+a x+a^{2}\right)$
5. The excluded value of the rational expression $\frac{x^{3}+8}{x^{2}-2 x-8}$ is
(A) 8
(B) 2
(C) 4
(D) 1
6. If a polynomial is a perfect square then its factors will be repeated \qquad number of times
(A) Odd
(B) zero
(C) even
(D) none of the above
7. $\frac{3 y-3}{y} \div \frac{7 y-7}{3 y^{2}}$ is
(A) $\frac{9 y}{7}$
(B) $\frac{9 y^{3}}{21 y-21}$
(C) $\frac{21 y^{2}-42 y+21}{3 y^{3}}$
(D) $\frac{7\left(y^{2}-2 y+1\right)}{y^{2}}$
8. The solution of $x^{2}-25=0$ is
(A) No real roots
(B) real and equal roots
(C) Real and unequal roots
(D) imaginary roots
9. For the given matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$ the order of the matrix $\left(A^{T}\right)^{T}$ is
(A) 2×3
(B) 3×2
(C) 3×4
(D) 4×3
10. On dividing $\frac{x^{2}-25}{x+3}$ by $\frac{x+5}{x^{2}-9}$
(A) $(x-5)(x-3)$
(B) $(x-5)(x+3)$
(C) $(x+5)(x-3)$
(D) $(x+5)(x+3)$

PTA-6

4. Geometry

Text Book Questions

1. If in triangles $A B C$ and $E D F, \frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when
(A) $\angle B=\angle E$
(B) $\angle A=\angle D$
(C) $\angle \boldsymbol{B}=\angle \boldsymbol{D}$
(D) $\angle A=\angle F$
2. In $\triangle L M N, \angle L=60^{\circ}, \angle M=50^{\circ}$. If $\triangle L M N \sim \triangle P Q R$ then the value of $\angle R$ is
(A) 40°
(B) 70°
(C) 30°
(D) 110°
3. If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $A C=5 \mathrm{~cm}$, then $A B$ is

PTA-4, MAY-22
(A) 2.5 cm
(B) 5 cm
(C) 10 cm
(D) $5 \sqrt{2} \mathrm{~cm}$
4. In a given figure $S T \| Q R, P S=2 \mathrm{~cm}$ and $S Q=3 \mathrm{~cm}$. Then the ratio of the area of $\triangle P Q R$ to the area of $\triangle P S T$ is
(A) $25: 4$
(B) $25: 7$
(C) $25: 11$
(D) $25: 13$

5. The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. If $P Q=10 \mathrm{~cm}$, then the length of $A B$ is
(A) $6 \frac{2}{3} \mathrm{~cm}$
(B) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
(C) $66 \frac{2}{3} \mathrm{~cm}$
(D) 15 cm
6. If in $\triangle A B C, D E \| B C . A B=3.6 \mathrm{~cm}, A C=2.4 \mathrm{~cm}$ and $A D=2.1 \mathrm{~cm}$ then the length of $A E$ is
(A) 1.4 cm
(B) 1.8 cm
(C) 1.2 cm
(D) 1.05 cm SEP-21, PTA-3, JUL-22
7. In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}, B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$. The length of the side $A C$ is

PTA-6, MAY-22
(A) 6 cm
(B) 4 cm
(C) 3 cm
(D) 8 cm
8. In the adjacent figure $\angle B A C=90^{\circ}$ and $A D \perp B C$ then
(A) $B D \cdot C D=B C^{2}$
(B) $A B \cdot A C=B C^{2}$
(C) $\boldsymbol{B D} \cdot \boldsymbol{C D}=\boldsymbol{A D} \boldsymbol{D}^{2}$
(D) $A B \cdot A C=A D^{2}$

PTA-1
9. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m , what is the distance between their tops?
(A) $\mathbf{1 3} \mathrm{m}$
(B) 14 m
(C) 15 m
(D) 12.8 m
10. In the given figure, $P R=26 \mathrm{~cm}, Q R=24 \mathrm{~cm}, \angle P A Q=90^{\circ}$, $P A=6 \mathrm{~cm}$ and $Q A=8 \mathrm{~cm}$. Find $\angle P Q R$
(A) 80°
(B) 85°
(C) 75°
(D) 90°

Creative MCQ

1. The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respective. If $P Q=10 \mathrm{~cm}$, then the length of AB is

PTA-5
(A) $6 \frac{2}{3} \mathrm{~cm}$
(B) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
(C) $66 \frac{2}{3} \mathrm{~cm}$
(D) 15 cm

5. Coordinate Geometry

Text Book Questions

1. The area of triangle formed by the points $(-5,0),(0,-5)$ and $(5,0)$ is

SEP-21,PTA-2
(A) 0 sq. units
(B) $\mathbf{2 5}$ sq. units
(C) 5 sq. units
(D) none of these
2. A man walks near a wall, such that the distance between him and the wall is 10 units consider the wall to be the Y axis. The path travelled by the man
(A) $x=10$
(B) $y=10$
(C) $x=0$
(D) $y=10$
3. The straight line given by the equation $x=11$ is

PTA-1, SEP-20
(A) Parallel to X axis
(B) parallel to Y axis
(C) passing through the origin
(D) passing through the point $(0,11)$
4. If $(5,7),(3, p)$ and $(6,6)$ are collinear then the value of p is
(A) 3
(B) 6
(C) 9
(D) 12
5. The point of intersection $3 x-y=4$ and $x+y=8$ is

PTA-5, MAY-22
(A) $(5,3)$
(B) $(2,4)$
(C) $(3,5)$
(D) $(4,4)$
6. The slope of the line joining $(12,3)$ and $(4, a)$ is $\frac{1}{8}$ the value of ' a ' is

PTA-2, JUL-22
(A) 1
(B) 4
(C) -5
(D) 2
7. The slope of the line which is perpendicular to line joining the points $(0,0)$ and $(-8,8)$ is
(A) -1
(B) 1
(C) $\frac{1}{3}$
(D) -8

MAY-22
8. If slope of the line $P Q$ is $\frac{1}{\sqrt{3}}$ then the slope of the perpendicular bisector of $P Q$ is PTA-6, JUL-22
(A) $\sqrt{3}$
(B) $-\sqrt{3}$
(C) $\frac{1}{\sqrt{3}}$
(D) 0
9. If A is a point on the y - axis whose ordinate is 8 and B is a point on the X axis whose abscissae is 5 then the equation of the line $A B$ is
(A) $8 x+5 y=40$
(B) $8 x-5 y=40$
(C) $x=8$
(D) $y=5$
10. The equation of the line passing through the origin and perpendicular to the line

PTA-4 $7 x-3 y+4=0$
(A) $7 x-3 y+4=0$
(B) $3 x-7 y+4=0$
(C) $3 x+7 y=0$
(D) $7 x-3 y=0$
11. Consider four straight lines
(i) $l_{1}: 3 y=4 x+5$
(ii) $l_{2}: 4 y=3 x-1$
(iii) $l_{3}: 4 y+3 x=7$
(iv) $l_{4}: 4 x+3 y=2$

Which of the following statement is true
(A) l_{1} and l_{2} are perpendicular
(B) l_{1} and l_{4} are parallel
(C) l_{2} and l_{4} are perpendicular
(D) l_{2} and l_{3} are parallel
12. A straight line has equation $8 y=4 x+21$ which of the following is true.

PTA-3
(A) The slope is 0.5 and the y intercept is 2.6
(B) The slope is 5 and the y intercept is 1.6
(C) The slope is 0.5 and the y intercept is 1.6
(D) The slope is 5 and the y intercept is 2.6
13. When proving that a quadrilateral is a trapezium it is necessary to show

PTA-4
(A) Two sides are parallel
(B) Two parallel and two non- parallel sides
(C) Opposite sides are parallel
(D) All sides are of equal length
14. When proving that a quadrilateral is a parallelogram by using slopes you must find
(A) The slopes of two sides
(B) The slopes of two pair of opposite sides
(C) The length of all sides
(D) Both the length and slopes of two sides
15. $(2,1)$ is the point of intersection of two lines
(A) $x-y-3=0,3 x-y-7=0$
(B) $\boldsymbol{x}+\boldsymbol{y}=3,3 \boldsymbol{x}+\boldsymbol{y}=\mathbf{7}$
(C) $3 x+y=3, x+y=7$
(D) $x+3 y-3=0, x-y-7=0$

Creative MCQ

1. The perimeter of a triangle formed by the points $(0,0),(1,0)$ and $(0,1)$ is
(A) $\sqrt{2}$
(B) 2
(C) $2+\sqrt{2}$
(D) $2-\sqrt{2}$
2. If the points $A(6,1), B(8,2), C(9,4)$ and $D(p, 3)$ are the vertices of a parallelogram, taken in order then the value of p is
(A) -7
(B) 7
(C) 6
(D) -6

PTA-5

