May to Success 10th Maths STUDY MATERIAL

இந்த கையேட்டில் கீழ் கண்ட பகுதிகள் உள்ளன:

➤ Book Back Question - (1 Mark).

இந்த கையேட்டில் உள்ளவை வெறும் மாதிரிப் பக்கங்களே, கீழே உள்ள வழிகளில் எங்கள் முழுமையான புத்தகங்களை நீங்கள் வாங்கலாம்.

Main Book	Practice Book	Special book
WAY TO SUCCESS Mad to Observe MATHEMATICS A Complete Guide Anal Prestee Book MAY TO SUCCESS A Complete Observe A Complete Guide	WAY TO SUCCESS State to Column 10 MATHEMATICS PRACTICE BOOK Column Column	WAY TO SUCCESS Second to Colonial (1) 10th MATHS PUBLIC EXAM SPECIAL GUIDE The Name Inspirit land has decrease. The Name Inspirit land has decrease. MAY TO SUCCESS Second to Colonial (1) 10th MATHS PUBLIC EXAM SPECIAL GUIDE The Name Inspirit land has decrease. MAY TO SUCCESS THE NAME IN THE NAME
300/-	100/-	100/-

For Bulk Orders, Please Contact Our District Co-ordinators

Ariyalur: 7094441952, 9843427724 Chennai: 7094441953, 7868911969 Chengalpet: 7397774505, 9600526295 Coimbatore: 7397774501, 8973711777 Cuddalore: 7397774502, 9003557799 Dharmapuri: 7397774503, 9787144519 Dindigul: 7094441954, 9150078022 Erode: 7397774504, 9788831237

Kallakuruchi: 7094441965, 9943153202 **Kanchipuram:** 7397774505, 9600526295 **Kanniyakumari:**7397774506, 9486679747

Karur: 7094441955, 9842964646 **Krishnagiri:** 7094441956, 9543811011 **Madurai:** 7094441957, 9843349892

Mayiladuthurai: 8680810626, 9789175104

Nagapattinam: 7094441966, 7598868760 Namakkal: 7094441958, 7418176317

Perambalur: 7397774509, 9003557799 **Pudukottai:** 7397774510, 9597402010

Ramanathapuram: 7094441959, 9150854043

Ranipet: 7094441964, 9994311090 Salem: 7397774511, 9952499928 Sivaganga: 7397774512, 7708672601 Tenkasi: 7397774515, 9500806359 Thanjavur: 7094441960, 9940333073

Theni: 7397774513, 7904657547

Thirupathur:7094441961, 9786315453 Thiruvallur: 7397774514, 8667604216 Thiruvarur:7094441962, 7598868760 Thoothukudi:7397774507, 9487771682 Tiruchirappalli: 9626053030, 9787609090

Thuraiyur: 9994595695, 9965894470 **Tirunelveli:** 7397774515, 9500806359 **Tiruppur:** 7397774524 9788776767

Tiruvannamalai: 7094441963, 9952782495

Vellore: 7094441964, 9994311090 Villuppuram: 7094441965, 9943153202 Virudhunagar: 7397774516, 8189844465

You can also buy our books in Book Shops and Stationaries near you.

----- For Individual orders -----

Call us: 9787609090, 9787201010

VPP Order: You can give SMS to 9787104040 to get books by VPP

Online Purchase: www.bookade.com, Amazon

PART – I – 1 Mark Questions

1. Relations and Functions

		Text Book	Questions		
1.	If $n(A \times B) = 6$ and $A =$	$\{1,3\}$ then $n(B)$ is			SEP-21
	(A) 1	(B) 2	(C) 3	(D) 6	
2.	$A = \{a, b, p\}, B = \{2,3\}, C$	$= \{p, q, r, s\}$ then $n[(A \cap B)]$	$A \cup C) \times B$] is		PTA-3
	(A) 8	(B) 20	(C) 12	(D) 16	
3.	If $A = \{1,2\}, B = \{1,2,3,4\}$	ch of the following sta	atement		
	is true				SEP-20
	(A) $(A \times C) \subset (B \times D)$		(B) $(B \times D) \subset (A \times C)$		
	$(C) (A \times B) \subset (A \times D)$		(D) $(D \times A) \subset (B \times A)$	4)	
4.	If there are 1024 relation	is from a set $A = \{1,2,3\}$	$3,4,5$ } to a set B , then t	he number of elemen	t in B is
	(A) 3	(B) 2	(C) 4	(D) 8 PTA-2,	, JUL-22
5.	The range of the relation	$s R = \{(x, x^2) x \text{ is a pr}$	ime number less than	13} is PTA-4,	, JUL-22
	$(A){2,3,5,7}$	(B) {2,3,5,7,11}	(C) {4,9,25,49,121}	(D) {1,4,9,25,49,121	}
6.	If the ordered pairs ($a +$	2,4) and $(5, 2a + b)$ and	re equal then (a, b) is	PTA-6, N	ЛАҮ-22
	(A)(2,-2)	(B) (5,1)	(C)(2,3)		
7.	Let $n(A) = m$ and $n(B) =$	= n then the total num	ber of non-empty relat	ions that can be defin	ed from
	A to B is				
	(A) m^n	(B) n^m	(C) $2^{mn} - 1$	(D) 2^{mn}	DTA 4
8.	If $\{(a, 8), (6, b)\}$ represen	ts an identity function	, then the value of $lpha$ an	nd <i>b</i> respectively.	PTA-1
	(A) (8,6)	(B) (8,8)	(C) (6,8)	(D) (6,6)	
9.	Let $A = \{1,2,3,4\}$ and $B =$	{4,8,9,10}. A function <i>f</i>	$f: A \to B \text{ given by } f = \{ a \in A \}$	(1,4), (2,8), (3,9), (4,10))} is a
	(A) Many-one function		(B) Identity function		PTA-4
	(C) One-to-one function		(D) Into function		
10	$. If f(x) = 2x^2 \text{ and } g(x) =$	$=\frac{1}{3x}$, then $f\circ g$ is			
	$(A)\frac{3}{2x^2}$	$(B)\frac{2}{3r^2}$	$(C)\frac{2}{9r^2}$	$(D)\frac{1}{6x^2}$	
11	. If $f: A \to B$ is a bijective f	function and if $n(B) =$	7, then $n(A)$ is equal t		PTA-2
	(A) 7	(B) 49	(C) 1	(D) 14	
12	Let f and g be two functi	ons given by		` ,	
	$f = \{(0,1), (2,0), (3,-4),$	•			
	$g = \{(0,2), (1,0), (2,4), (-1,0), (2,4), (-1,0), (-1$	-4,2), (7,0)} then the r	ange of $f \circ g$ is		
	(A) {0,2,3,4,5}	(B) $\{-4,1,0,2,7\}$	(C) {1,2,3,4,5}	(D) {0, 1, 2}	
13	Let $f(x) = \sqrt{1 + x^2}$ then				
	(A) f(xy) = f(x).f(y)		(B) $f(xy) \ge f(x)$. $f(x)$	y)	
	(C) $f(xy) \leq f(x) \cdot f(y)$		(D) None of these	•	
14	. If $g = \{(1,1), (2,3), (3,5$	(4,7)} is a function give	` '	en the values of α and	β are
	(A) $(-1,2)$		(C) $(-1, -2)$		PTA-6
15	$f(x) = (x+1)^3 - (x-1)^3$) ³ represents a function	on which is		
	(A)linear			(D) quadratic	PTA-5

Creative MCQ

	Let $f(x) = x^2 - x$, then $f(x) = x^2 - x$			(5)	SEP-20			
	(A) 4x	` '	(C) $2 - 4x$	` '				
2.	If $n(A) = p$, $n(B) = q$ the		relations that exist be $(C) 2^{p+q}$		PTA-1			
2	(A) 2^p Given $f(x) = (-1)^x$ is a	(B) 2^q function from \mathbb{N} to \mathbb{Z}		(D) 2^{pq}	PTA-3			
Э.	(A) $\{1\}$	(B) N	(C) $\{1, -1\}$	(D) Z	PIA-3			
4.	The given diagram repres	` '	(0) (1, 1)	A .	В			
	(A) an onto function		(B) a constant function	on (2)	\uparrow_2^4 PTA-6			
	(C) an one-one function		(D) not a function	4 6	16			
	(a) an one one function		(b) not a function	_	10			
	2. Numbers and Sequences							
			Questions					
1.	Euclid's division lemma			ıere exist uniqı	ie integers q			
	and r such that $a = bq$			(D) 0				
2	(A) 1 < r < b		* *					
۷.	Using Euclid's division		of any positive integ					
	possible remainders are		(C) 0, 1, 3		PTA-5, SEP-20			
_	(A) 0, 1, 8							
3.	If the HCF of 65 and 117							
	(A) 4	(B) 2	(C) 1	(D) 3	MAY-22			
4.	The sum of the exponent							
_	(A)1	(B) 2	(C) 3	(D) 4 SEP-21				
5.	The least number that is	-	(C) 5025	•	e) IS			
6	(A) 2025 $7^{4k} \equiv \underline{\qquad} (mod \ 100)$	(B) 5220	(C) 3023	(D) 2520	DTA 1			
о.	$A = \underline{\qquad} (mod\ 100)$ (A) 1	(B) 2	(C) 3	(D) 4	PTA-1			
7			` '	(D) 4	CED 24 MDI			
/.	Given $F_1 = 1$, $F_2 = 3$ and (A) 3	$\begin{array}{c} \text{ur}_{n} - r_{n-1} + r_{n-2} \text{ th} \\ \text{(B) 5} \end{array}$	(C) 8	(D) 11	SEP-21, MDL			
0	` ,			•	. 4. XA71. : -1 C			
8.	The first term of an arit		s unity and the commo	on difference is	3 4. Which of			
	the following will be a to	(B) 10091	(C) 7881	(D) 12E21				
_	(A) 4551			(D) 13531				
9.	If 6 times of 6 th term of 3							
	(A) 0	(B) 6	(C) 7	(D) 13	PTA-4			
10	10. An A.P consists of 31 terms. It is 16^{th} term is m , then the sum of all the terms of this A.P is							
	(A) 16m	(B) 62m	(C) 31m	(D) $\frac{31}{2}$ m	PTA-5			
11	11. In an A.P., the first term is 1 and the common difference is 4. How many terms of the A.P must							
	be taken for their sum to be equal to 120?							
	(A) 6	(B) 7	(C) 8	(D) 9				

12. If $A = 2^{65}$ and $B = 2^{64} + 2^{63} + 2^{62} + \dots + 2^{0}$ which of the following is true? PTA-6, SEP-20 (A) B is 2^{64} more than A(B) A and B are equal (C) B is larger than A by 1 (D) A is larger than B by 1 13. The next term of the sequence $\frac{3}{16}$, $\frac{1}{8}$, $\frac{1}{12}$, $\frac{1}{18}$, ... is PTA-2 (B) $\frac{1}{27}$ 14. If the sequence t_1 , t_2 , t_3 , are in A.P then the sequence t_6 , t_{12} , t_{18} , ... is (A) a Geometric Progression (B) an Arithmetic Progression (C) neither an Arithmetic Progression nor a Geometric Progression (D) a constant sequence 15. The value of $(1^3 + 2^3 + 3^3 + \dots + 15^3) - (1 + 2 + 3 + \dots + 15)$ is PTA-3 (A) 14400 (B) 14200 (C) 14280 (D) 14520 **Creative MCQ** 1. If t_n is the nth term of an A.P., then $t_{8n}-t_n$ is MAY-22 (A) (8n - 1)d(B) (8n-2)d(C) (7n-2)d(D)(7nd)2. The sequence -3, -3, -3 is PTA-1 (B) a G.P only (A) An A.P only (C) Neither A.P nor G.P (D) both A.P and G.P 3. If $2 + 4 + 6 + \cdots + 2k = 90$, then the value of *k* is PTA-3 (B) 9 (D) 11 (C) 104. If a and b are two positive integers where a > 0 and b is a factor of a, then HCF of a and b is (D) $\frac{a}{b}$ (A) b(B) a (C) 3ab PTA-4 5. If a, b, c are in A.P then $\frac{a-b}{b-c}$ is equal to PTA-6 (C) $\frac{a}{c}$ (A) $\frac{a}{b}$ $(B)^{\frac{b}{-}}$ (D) 1 3. Algebra **Text Book Questions** 1. A system of three linear equations in three variables is inconsistent if their planes PTA-1. JUL-22 (A) Intersect only at a point (B) intersect in a line (C) Coincides with each other (D) do not intersect 2. The solution of the system x + y - 3z = -6, -7y + 7z = 7, 3z = 9 is JUL-22 (A) x = 1, y = 2, z = 3(B) x = -1, y = 2, z = 3(C) x = -1, y = -2, z = 3(D) x = 1, y = -2, z = 33. If (x-6) is the HCF of $x^2 - 2x - 24$ and $x^2 - kx - 6$ then the value of k is PTA-4, MAY-22 (A) 3(B) 5 (C) 6(D) 84. $\frac{3y-3}{v} \div \frac{7y-7}{3y^2}$ is PTA-5 (B) $\frac{9y^3}{21y-21}$ (C) $\frac{21y^2-42y+21}{3y^3}$ (D) $\frac{7(y^2-2y+1)}{y^2}$ $(A)\frac{9y}{7}$

$$\frac{1}{5. y^2 + \frac{1}{y^2}}$$
 is not equal to

PTA-6, JUL-22

(A)
$$\frac{y^4+1}{y^2}$$

(B)
$$\left(y + \frac{1}{\nu}\right)^2$$

(C)
$$\left(y - \frac{1}{y}\right)^2 + 2$$

(B)
$$\left(y + \frac{1}{y}\right)^2$$
 (C) $\left(y - \frac{1}{y}\right)^2 + 2$ **(D)** $\left(y + \frac{1}{y}\right)^2 - 2$

(A)
$$\frac{x^2-7x+40}{(x-5)(x+5)}$$

(B)
$$\frac{x^2+7x+40}{(x-5)(x+5)(x+1)}$$
 (C) $\frac{x^2-7x+40}{(x^2-25)(x+1)}$ (D) $\frac{x^2+10}{(x^2-25)(x+1)}$

(C)
$$\frac{x^2-7x+40}{(x^2-25)(x+1)}$$

(D)
$$\frac{x^2+10}{(x^2-25)(x+1)}$$

7. The square root of $\frac{256x^8y^4z^{10}}{25x^6y^6z^6}$ is equal to

SEP-21

(A)
$$\frac{16}{5} \left| \frac{x^2 z^4}{y^2} \right|$$

(B)
$$16 \left| \frac{y^2}{x^2 z^4} \right|$$
 (C) $\frac{16}{5} \left| \frac{y}{x z^2} \right|$ (D) $\frac{16}{5} \left| \frac{x z^2}{y} \right|$

(C)
$$\frac{16}{5} \left| \frac{y}{xz^2} \right|$$

(D)
$$\frac{16}{5} \left| \frac{xz^2}{y} \right|$$

8. Which of the following should be added to make $x^4 + 64$ a perfect square

MAY-22

(A)
$$4x^2$$

(B)
$$16x^2$$

(C)
$$8x^2$$

(D)
$$-8x^2$$

9. The solution of $(2x - 1)^2 = 9$ is equal to

$$(A) -1$$

$$(C) -1, 2$$

10. The values of a and b if $4x^4 - 24x^3 + 76x^2 + ax + b$ is a perfect square are

$$(C) - 120, 100$$

11. If the roots of the equation $g^2x^2 + p^2x + r^2 = 0$ are the squares of the roots of the equation $qx^2 + px + r = 0$, then q, p, r are in ____

(C) Both
$$A.P$$
 and $G.P$ (D) None of these

12. Graph of a linear equation is a

SEP-21, PTA-2

- (A) Straight line
- (B) circle
- (C) parabola
- (D) hyperbola

13. The number of points of intersection of the quadratic polynomial $x^2 + 4x + 4$ with the X axis is

(C)
$$0 \text{ or } 1$$

$$(D) -2$$

MAY-22

Creative MCQ

1. The G.C.D of
$$a^{m}$$
, a^{m+1} , a^{m+2} is

SEP-21

MDL

PTA-1

PTA-2

(B) a^{m+1}

(C) a^{m+2}

(D) 1

2. $\frac{a^2}{a^2 - b^2} + \frac{b^2}{b^2 - a^2} =$

SEP-20

(B) a + b

(C) $a^2 - b^2$

(D) 1

3. The non- diagonal elements in any unit matrix are _____

(C) m

(D) n

4. The LCM of $x^3 - a^3$ and $(x - a)^2$ is

(A) $(x^3 - a^3)(x + a)$

(B) $(x^3 - a^3)(x - a)^2$

(D) $(x + a)^2(x^2 + ax + a^2)$

(C) $(x-a)^2(x^2+ax+a^2)$ 5. The excluded value of the rational expression $\frac{x^3+8}{x^2-2x-8}$ is

(B) 2

6. If a polynomial is a perfect square then its factors will be repeated _____ number of times PTA-4

(A) Odd

(B) zero

(C) even

(D) none of the above

7. $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is

PTA-5

 $(A)\frac{9y}{7}$

(B) $\frac{9y^3}{21y-21}$ (C) $\frac{21y^2-42y+21}{3y^3}$ (D) $\frac{7(y^2-2y+1)}{y^2}$

8. The solution of $x^2 - 25 = 0$ is

PTA-5

(A) No real roots

(B) real and equal roots

(C) Real and unequal roots

(D) imaginary roots

9. For the given matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ the order of the matrix $(A^T)^T$ is

PTA-5

PTA-6

SEP-20

PTA-4. MAY-22

(A) 2×3

(B) 3×2

(C) 3×4

(D) 4×3

10. On dividing $\frac{x^2-25}{x+3}$ by $\frac{x+5}{x^2-9}$

4. Geometry

Text Book Questions

- 1. If in triangles ABC and EDF, $\frac{AB}{DE} = \frac{BC}{FD}$ then they will be similar, when
 - $(A) \angle B = \angle E$
- (B) $\angle A = \angle D$
- $(\mathsf{C}) \angle B = \angle D$
- (D) $\angle A = \angle F$
- 2. In ΔLMN , $\angle L = 60^{\circ}$, $\angle M = 50^{\circ}$. If $\Delta LMN \sim \Delta PQR$ then the value of $\angle R$ is
 - (D) 110°
- (A) 40° 3. If $\triangle ABC$ is an isosceles triangle with $\angle C = 90^{\circ}$ and AC = 5 cm, then AB is
- $(B) 70^{\circ}$
- (C) 30°

- (A) 2.5 cm
- (B) 5 cm
- (C) 10 cm
- (D) $5\sqrt{2}$ cm

4. In a given figure $ST \parallel QR$, PS = 2 cm and SQ = 3 cm. Then the ratio of the area of ΔPQR to the area of ΔPST is

(B)
$$25:7$$

(D)
$$25:13$$

5. The perimeters of two similar triangles $\triangle ABC$ and $\triangle PQR$ are 36 cm and 24 cm respectively. If PQ=10~cm, then the length of AB is

(A) $6\frac{2}{3}$ cm

(B)
$$\frac{10\sqrt{6}}{3}$$
 cm

(C)
$$66\frac{2}{3}cm$$

- (D) 15 cm
- 6. If in $\triangle ABC$, $DE \parallel BC$. AB = 3.6 cm, AC = 2.4 cm and AD = 2.1 cm then the length of AE is

(A) 1.4 cm

- (D) $1.05\ cm$ [SEP-21, PTA-3, JUL-22]
- 7. In a \triangle ABC, AD is the bisector of \angle BAC. If AB = 8 cm, BD = 6 cm and DC = 3 cm. The length of the side AC is

(A) 6 cm

- (D) 8 cm
- 8. In the adjacent figure $\angle BAC = 90^{\circ}$ and $AD \perp BC$ then

(A)
$$BD \cdot CD = BC^2$$

(B)
$$AB \cdot AC = BC^2$$

(D)
$$AB \cdot AC = AD^2$$

PTA-6

- 9. Two poles of heights 6 *m* and 11 *m* stand vertically on a plane ground. If the distance between their feet is 12 *m*, what is the distance between their tops?
 - (A) 13 m
- (B) 14 m
- (C) 15 m
- (D) 12.8 m
- 10. In the given figure, PR = 26 cm, QR = 24 cm, $\angle PAQ = 90^{\circ}$, PA = 6 cm and QA = 8 cm. Find $\angle PQR$

(D) 90°

Creative MCQ

- 1. The perimeters of two similar triangles $\triangle ABC$ and $\triangle PQR$ are 36cm and 24cm respective. If PQ = 10cm, then the length of AB is PTA-5
 - (A) $6^{\frac{2}{3}}$ cm
- (B) $\frac{10\sqrt{6}}{2}$ cm
- (C) $66\frac{2}{3}$ cm
- (D) 15 cm

5. Coordinate Geometry

Text Book Questions 1. The area of triangle formed by the points (-5,0), (0,-5) and (5,0) is SEP-21,PTA-2 (A) 0 sq. units (B) 25 sq. units (C) 5 sq. units (D) none of these 2. A man walks near a wall, such that the distance between him and the wall is 10 units consider the wall to be the *Y* axis. The path travelled by the man (C) x = 0(D) y = 10(A) x = 10(B) y = 103. The straight line given by the equation x = 11 is PTA-1, SEP-20 (A) Parallel to X axis (B) parallel to Y axis (C) passing through the origin (D) passing through the point (0,11)4. If (5,7), (3,p) and (6,6) are collinear then the value of p is PTA-5, MAY-22 (D) 12 (B) 6 5. The point of intersection 3x - y = 4 and x + y = 8 is PTA-2, JUL-22 (A)(5,3)(B)(2,4)(C)(3,5)(D)(4,4)6. The slope of the line joining (12,3) and (4, a) is $\frac{1}{8}$ the value of 'a' is PTA-3 (C) -5(A) 1(B) 4 (D) 2 7. The slope of the line which is perpendicular to line joining the points (0,0) and (-8,8) is MAY-22 (D) -8(A) -1(B) 1 (C) $\frac{1}{2}$ 8. If slope of the line PQ is $\frac{1}{\sqrt{3}}$ then the slope of the perpendicular bisector of PQ is PTA-6, JUL-22 (B) $-\sqrt{3}$ (C) $\frac{1}{\sqrt{2}}$ (A) $\sqrt{3}$ 9. If A is a point on the y – axis whose ordinate is 8 and B is a point on the X axis whose abscissae is 5 then the equation of the line AB is (B) 8x - 5y = 40(C) x = 8(A) 8x + 5y = 40(D) y = 510. The equation of the line passing through the origin and perpendicular to the line PTA-4 7x - 3y + 4 = 0(B) 3x - 7y + 4 = 0 (C) 3x + 7y = 0 (D) 7x - 3y = 0(A) 7x - 3y + 4 = 011. Consider four straight lines (iii) l_3 : 4y + 3x = 7 (iv) l_4 : 4x + 3y = 2(i) l_1 : 3y = 4x + 5(ii) l_2 : 4y = 3x - 1Which of the following statement is true (A) l_1 and l_2 are perpendicular (B) l_1 and l_4 are parallel (C) l_2 and l_4 are perpendicular (D) l_2 and l_3 are parallel 12. A straight line has equation 8y = 4x + 21 which of the following is true. PTA-3 (A) The slope is 0.5 and the y intercept is 2.6 (B) The slope is 5 and the y intercept is 1.6 (C) The slope is 0.5 and the y intercept is 1.6 (D) The slope is 5 and the y intercept is 2.6 13. When proving that a quadrilateral is a trapezium it is necessary to show PTA-4

(A) Two sides are parallel

(C) Opposite sides are parallel

(B) Two parallel and two non- parallel sides

(D) All sides are of equal length

- 14. When proving that a quadrilateral is a parallelogram by using slopes you must find
 - (A) The slopes of two sides

(B) The slopes of two pair of opposite sides

(C) The length of all sides

- (D) Both the length and slopes of two sides
- 15. (2,1) is the point of intersection of two lines

(A)
$$x - y - 3 = 0$$
, $3x - y - 7 = 0$

(B)
$$x + y = 3$$
, $3x + y = 7$

(C)
$$3x + y = 3$$
, $x + y = 7$

(D)
$$x + 3y - 3 = 0$$
, $x - y - 7 = 0$

Creative MCQ

1. The perimeter of a triangle formed by the points (0,0), (1,0) and (0,1) is

SEP-21

(A) $\sqrt{2}$

- (B) 2
- (C) $2 + \sqrt{2}$
- (D) $2 \sqrt{2}$
- 2. If the points A(6,1), B(8,2), C(9,4) and D(p,3) are the vertices of a parallelogram, taken in order then the value of p is
 - (A) 7

- (B)7
- (C) 6
- (D) -6