PART - I - 1 Mark Questions

1. Relations and Functions

Text Book Questions

1.	If $n(A \times B) = 6$ and $A =$	$\{1,3\}$ then $n(B)$ is			
	(A) 1		(C) 3	(D) 6	SEP-21
2.	$A = \{a, b, p\}, B = \{2,3\}, C$	$C = \{p, q, r, s\} \text{ then } n[Q]$	$A \cup C) \times B$] is		APR-23, PTA-3
	(A) 8	(B) 20	(C) 12	(D) 16	
3.	If $A = \{1,2\}, B = \{1,2,3,4\}$	$\{C, C = \{5,6\} \text{ and } D = \{5,6\} \}$	5,6,7,8} then state whi	ch of the follov	wing statement
	is true				SEP-20
	(A) $(A \times C) \subset (B \times D)$		(B) $(B \times D) \subset (A \times C)$	<i>C</i>)	
	$(C) (A \times B) \subset (A \times D)$		(D) $(D \times A) \subset (B \times A)$	4)	
4.	If there are 1024 relation	ns from a set $A = \{1,2,6\}$	3,4,5} to a set <i>B</i> , then t	the number of	element in <i>B</i> is
	(A) 3	(B) 2	(C) 4	` ,	3, PTA-2, JUL-22
5.	The range of the relation	$\operatorname{s} R = \{(x, x^2) x \text{ is a part}$	rime number less than	13} is	PTA-4, JUL-22
	$(A){2,3,5,7}$		(C) {4,9,25,49,121}		,49,121}
6.	If the ordered pairs (a +	2,4) and $(5, 2a + b)$ a	re equal then (a, b) is		PTA-6, MAY-22
	(A)(2,-2)	(B) (5,1)	(C)(2,3)	(D) $(3,-2)$	
7.	Let $n(A) = m$ and $n(B) = m$	= n then the total num	ber of non-empty relat	tions that can b	e defined from
	A to B is				
	(A) m^n	• •	(C) $2^{mn} - 1$	• •	etively PTA-1
8.	If $\{(a, 8), (6, b)\}$ represer				ctively.
	(A) (8,6)	(B) (8,8)	(C) (6,8)	(D) (6,6)	
9.	Let $A = \{1,2,3,4\}$ and $B =$: {4,8,9,10}. A function <i>f</i>			9), (4,10)} is a
	(A) Many-one function		(B) Identity function		PTA-4
	(C) One-to-one function		(D) Into function		
10	$ If f(x) = 2x^2 \text{ and } g(x) = $	$=\frac{1}{3x}$, then $f\circ g$ is			
	$(A)\frac{3}{2x^2}$	(B) $\frac{2}{3x^2}$	$(C)\frac{2}{9x^2}$	(D) $\frac{1}{6x^2}$	
11	. If $f: A \to B$ is a bijective f			070	PTA-2
	(A) 7	(B) 49		(D) 14	(
12	. Let f and g be two funct		` '	` ,	
	$g = \{(0,2), (1,0), (2,4), (-1,0), (-$, (,),	
	(A) {0,2,3,4,5}			(D) {0, 1, 2}	
13	Let $f(x) = \sqrt{1 + x^2}$ then				
	(A) f(xy) = f(x).f(y)		(B) $f(xy) \ge f(x).f(x)$	<i>y</i>)	
	(C) $f(xy) \leq f(x).f(y)$		(D) None of these		
14	. If $g = \{(1,1), (2,3), (3,5),$	$(4,7)$ } is a function give	en by $g(x) = \alpha x + \beta$ th	en the values o	f α and β are
	(A) (-1,2)		(C)(-1,-2)		PTA-6
15	$f(x) = (x+1)^3 - (x-1)^3$	1) ³ represents a functi	on which is		

(C) reciprocal

(B) cubic

(A) linear

(D) quadratic

PTA-5

SEP-20

APR-23

PTA-1

Creative MCQ 1. Let $f(x) = x^2 - x$, then f(x - 1) - f(x + 1) is (A) 4x(B) 2 - 2x(C) 2 - 4x2. If n(A) = p, n(B) = q then the total number of relations that exist between A and B is (C) 2^{p+q} (A) 2^{p} (B) 2^{q} 3. Given $f(x) = (-1)^x$ is a function from \mathbb{N} to \mathbb{Z} . Then the range of f is (B) N (C) $\{1, -1\}$ $(A) \{1\}$ 4. The given diagram represents (A) an onto function

PTA-3

(B) a constant function

(C) an one-one function

(D) not a function

(D) 4x - 2

(D) 2^{pq}

(D) Z

2. Numbers and Sequences

Text Book Questions

1.	Euclid's division lemma	states that for positive	ve integers a and	<i>b</i> , there exist unique integers	q
	and r such that $a = bq$	+ r , where r must sat	isfy		
	(A) $1 < r < b$	(B) $0 < r < b$	(C) $0 \le r < b$	(D) $0 < r \le b$	
2	Haina Evalid'a division	lamana if the author	of any positive i	measure is dissided by O them th	L

2. Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are PTA-5, SEP-20

(A) 0, 1, 8

(B) 1, 4, 8

(C) 0.1.3

(D) 1, 3, 5

3. If the HCF of 65 and 117 is expressible in the form of 65m - 117, then the value of m is

(A) 4

(B) 2

(C) 1

(D) 3

MAY-22

4. The sum of the exponents of the prime factors in the prime factorization of 1729 is

(B) 2

(C)3

(D) 4 | SEP-21,PTA-4,JUL-22

5. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is

(A) 2025

(B) 5220

(C) 5025

(D) 2520

6. $7^{4k} \equiv \underline{\hspace{1cm}} \pmod{100}$

JUN-23, PTA-1

(A) 1

(B) 2

(D) 4

7. Given $F_1 = 1$, $F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5 is

APR-23, SEP-21, MDL

(D) 11

8. The first term of an arithmetic progression is unity and the common difference is 4. Which of the following will be a term of this A.P.

(A) 4551

(B) 10091

(C) 7881

(D) 13531

9. If 6 times of 6th term of an A.P is equal to 7 times the 7th term, then the 13th terms of the A.P is

(A) 0

(B) 6

(C)7

(D) 13

PTA-4

10. An A.P consists of 31 terms. It is 16^{th} term is m, then the sum of all the terms of this A.P is

(A) 16 m

(B) 62 m

(C) $31 \, \text{m}$

(D) $\frac{31}{2}$ m

11. In an A.P., the first term is 1 and the common difference is 4. How many terms of the A.P must be taken for their sum to be equal to 120? MDL

(A) 6

(B)7

(C)8

(D) 9

PTA-6, SEP-20

(A) B is 2^{64} more than A(B) A and B are equal (C) B is larger than A by 1 (D) A is larger than B by 1 13. The next term of the sequence $\frac{3}{16}$, $\frac{1}{8}$, $\frac{1}{12}$, $\frac{1}{18}$, ... is PTA-2 (B) $\frac{1}{27}$ 14. If the sequence t_1 , t_2 , t_3 , are in A.P then the sequence t_6 , t_{12} , t_{18} , ... is APR-23 (A) a Geometric Progression (B) an Arithmetic Progression (C) neither an Arithmetic Progression nor a Geometric Progression (D) a constant sequence 15. The value of $(1^3 + 2^3 + 3^3 + \dots + 15^3) - (1 + 2 + 3 + \dots + 15)$ is PTA-3 (A) 14400 (B) 14200 (C) 14280(D) 14520 **Creative MCQ** 1. The next term of the sequence $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{10}$, $\frac{1}{14}$, ... is JUN-23 (B) $\frac{1}{16}$ (D) $\frac{1}{20}$ 2. If t_n is the nth term of an A.P., then $t_{8n} - t_n$ is MAY-22 (C) (7n - 2)d(D)(7nd)(A) (8n - 1)d(B) (8n-2)d3. The sequence -3, -3, -3 is PTA-1 (B) a G.P only (A) An A.P only (C) Neither A.P nor G.P (D) both A.P and G.P 4. If $2 + 4 + 6 + \cdots + 2k = 90$, then the value of *k* is PTA-3 (B)9(C) 10(D) 11 5 If a and b are two positive integers where a > 0 and b is a factor of a, then HCF of a and b is (D) $\frac{a}{b}$ (A) b(C) 3ab (B) a PTA-4 6. If a, b, c are in A.P then $\frac{a-b}{b-c}$ is equal to PTA-6 (C) $\frac{a}{a}$ (A) $\frac{a}{b}$ (B) $\frac{b}{a}$ (D) 1 3. Algebra **Text Book Questions** 1. A system of three linear equations in three variables is inconsistent if their planes PTA-1, JUL-22 (A) intersect only at a point (B) intersect in a line (C) coincides with each other (D) do not intersect 2. The solution of the system x + y - 3z = -6, -7y + 7z = 7, 3z = 9 is JUL-22 (A) x = 1, y = 2, z = 3(B) x = -1, y = 2, z = 3(C) x = -1, y = -2, z = 3(D) x = 1, y = -2, z = 33. If (x-6) is the HCF of $x^2 - 2x - 24$ and $x^2 - kx - 6$ then the value of k is PTA-4, MAY-22 (A)3(C) 6(B) 5 (D) 8 4. $\frac{3y-3}{v} \div \frac{7y-7}{3y^2}$ is APR-23,PTA-5 (B) $\frac{9y^3}{21y-21}$ (C) $\frac{21y^2 - 42y + 21}{3y^3}$ (D) $\frac{7(y^2 - 2y + 1)}{y^2}$

12. If $A = 2^{65}$ and $B = 2^{64} + 2^{63} + 2^{62} + \dots + 2^{0}$ which of the following is true?

JUN-23, JUL-22, PTA-6

1 Mark Questions
$$\bigcirc$$

5. $y^2 + \frac{1}{y^2}$ is not equal to

(A) $\frac{y^4 + 1}{y^2}$ (B) $\left(y + \frac{1}{y}\right)^2$ (C) $\left(y - \frac{1}{y}\right)^2 + 2$ (D) $\left(y + \frac{1}{y}\right)^2 - 6$. $\frac{x}{x^2 - 25} - \frac{8}{x^2 + 6x + 5}$ gives

(A) $\frac{x^2 - 7x + 40}{(x - 5)(x + 5)}$ (B) $\frac{x^2 + 7x + 40}{(x - 5)(x + 5)(x + 1)}$ (C) $\frac{x^2 - 7x + 40}{(x^2 - 25)(x + 1)}$ (D) $\frac{x^2 + 10}{(x^2 - 25)(x + 1)}$

7. The square root of $\frac{256x^8y^4z^{10}}{25x^6y^6z^6}$ is equal to

(B)
$$\left(y + \frac{1}{y}\right)^2$$

(B)
$$\left(y + \frac{1}{y}\right)^2$$
 (C) $\left(y - \frac{1}{y}\right)^2 + 2$ **(D)** $\left(y + \frac{1}{y}\right)^2 - 2$

(D)
$$\left(y + \frac{1}{y}\right)^2 - 2$$

$$\frac{x^2 + 6x + 5}{(x - 5)(x + 5)}$$
 (B)
$$\frac{x^2 + 7x + 40}{(x - 5)(x + 5)(x + 5)}$$

(C)
$$\frac{x^2-7x+40}{(x^2-25)(x+1)}$$

(D)
$$\frac{x^2+10}{(x^2-25)(x+1)}$$

7. The square root of $\frac{256x^8y^4z^{10}}{25x^6y^6z^6}$ is equal to $\frac{3x^{2}y^{2}}{5x^{6}y^{6}z^{6}}$ is equal to $(B) 16 \left| \frac{y^{2}}{x^{2}z^{4}} \right| \qquad (C) \frac{16}{5} \left| \frac{y}{xz^{2}} \right| \qquad (D) \frac{16}{5} \left| \frac{xz^{2}}{y} \right|$

SEP-21

$$(A) \frac{16}{5} \left| \frac{x^2 z^4}{y^2} \right|$$

(B)
$$16 \left| \frac{y^2}{x^2 z^4} \right|$$

(C)
$$\frac{16}{5} \left| \frac{y}{xz^2} \right|$$

$$(D)\frac{16}{5}\left|\frac{xz^2}{y}\right|$$

8. Which of the following should be added to make $x^4 + 64$ a perfect square

MAY-22

(A) $4x^2$

(B) $16x^2$

(C) $8x^2$

(D) $-8x^2$

9. The solution of $(2x - 1)^2 = 9$ is equal to

$$(A) -1$$

$$(C) -1, 2$$

(D) None of these

10. The values of a and b if $4x^4 - 24x^3 + 76x^2 + ax + b$ is a perfect square are

(A) 100,120

(B) 10,12

(C) - 120, 100

(D) 12,10

11. If the roots of the equation $q^2x^2 + p^2x + r^2 = 0$ are the squares of the roots of the equation $qx^2 + px + r = 0$, then q, p, r are in _____

(A) A. P

(B) G.P

(C) Both A.P and G.P (D) None of these

JUN-23, SEP-21, PTA-2

12. Graph of a linear equation is a

(A) Straight line

(B) circle

(C) parabola

(D) hyperbola

13. The number of points of intersection of the quadratic polynomial $x^2 + 4x + 4$ with the X axis is

(A) 0

(C) 0 or 1

(D) -2

MAY-22

14. For the given matrix $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15 \end{bmatrix}$ the order of the matrix A^T is

(A) 2×3

(C) 3×4

(D) 4×3

15. If A is 2×3 matrix and B is a 3×4 matrix, how many columns does AB have

(B) 4

(C) 2

16. If number of columns and rows are not equal in a matrix then it is said to be a

(A) diagonal matrix (C) square matrix

(B) rectangular matrix (D) identity matrix

17. Transpose of a column matrix is

SEP-20

(A) unit matrix

(B) diagonal matrix

(C) column matrix

(D) row matrix

18. Find the matrix *X* if $2X + \begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 9 & 5 \end{bmatrix}$

PTA-6

(A) $\begin{bmatrix} -2 & -2 \\ 2 & -1 \end{bmatrix}$ (B) $\begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$

(D) $\begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}$

19. Which of the following can be calculated from the given matrices

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad \text{(i) } A^2 \text{ (ii) } B^2 \text{ (iii) } AB \text{ (iv) } BA$$

- (A) (i) and (ii) only (B) (ii) and (iii) only (C) (ii) and (iv) only
- (D) all of these

20. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 1 \\ -2 & 5 \end{bmatrix}$. Which of the following statements are correct?

(i)
$$AB + C = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix}$$
 (ii) $BC = \begin{bmatrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{bmatrix}$ (iii) $BA + C = \begin{bmatrix} 2 & 5 \\ 3 & 0 \end{bmatrix}$ (iv) $(AB)C = \begin{bmatrix} -8 & 20 \\ -8 & 13 \end{bmatrix}$

(A) (i) and (ii) only

(B) (ii) and (iii) only (C) (ii) and (iv) only (D) all of these

APR-23

SEP-21

SEP-20

MDL

PTA-1

PTA-2

PTA-5

PTA-5

Creative MCQ

1. Graph of a quadratic equation is

(A) Straight line

(B) Circle

(C) Parabola

(D) Hyperbola

2. The G.C.D of a^m , a^{m+1} , a^{m+2} is

(A) a^m

(B) a^{m+1}

(C) a^{m+2}

(D) 1

3. $\frac{a^2}{a^2 - b^2} + \frac{b^2}{b^2 - a^2} =$

(A) a-b

(B) a + b

(C) $a^2 - b^2$

(D) 1

The non- diagonal elements in any unit matrix are _____

(A) 0

(B) 1

(C) m

(D) n

5. The LCM of $x^3 - a^3$ and $(x - a)^2$ is

(A) $(x^3 - a^3)(x + a)$

(B) $(x^3 - a^3)(x - a)^2$

(C) $(x-a)^2(x^2+ax+a^2)$

(D) $(x + a)^2(x^2 + ax + a^2)$

6. The excluded value of the rational expression $\frac{x^3+8}{x^2-2x-8}$ is

(B) 2

(C)4

7. If a polynomial is a perfect square then its factors will be repeated _____ number of times PTA-4

(A) Odd

(B) zero

(C) even

(D) none of the above

8. $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is

 $(A)\frac{9y}{7}$

(B) $\frac{9y^3}{21y-21}$

(C) $\frac{21y^2 - 42y + 21}{2y^3}$ (D) $\frac{7(y^2 - 2y + 1)}{y^2}$

9. The solution of $x^2 - 25 = 0$ is

(A) No real roots

(B) real and equal roots

(C) Real and unequal roots

(D) imaginary roots

10. For the given matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ the order of the matrix $(A^T)^T$ is

PTA-5

(A) 2×3

(B) 3×2

(C) 3×4

11. On dividing $\frac{x^2-25}{x+3}$ by $\frac{x+5}{x^2-9}$

(A) (x-5)(x-3)

(B) (x-5)(x+3) (C) (x+5)(x-3) (D) (x+5)(x+3)

PTA-6

4. Geometry

Text Book Questions

1. If in triangles ABC and EDF, $\frac{AB}{DE} = \frac{BC}{ED}$ then they will be similar, when

APR-23

(A) $\angle B = \angle E$

(B) $\angle A = \angle D$

(C) $\angle B = \angle D$

(D) $\angle A = \angle F$

2. In ΔLMN , $\angle L = 60^{\circ}$, $\angle M = 50^{\circ}$. If $\Delta LMN \sim \Delta PQR$ then the value of $\angle R$ is (B) 70° (C) 30° (A) 40°

SEP-20

PTA-4. MAY-22

3. If $\triangle ABC$ is an isosceles triangle with $\angle C = 90^{\circ}$ and AC = 5 cm, then AB is (A) 2.5 cm

(B) 5 cm

(C) 10 cm

(D) $5\sqrt{2}$ cm

- 4. In a given figure $ST \parallel QR$, PS = 2 cm and SQ = 3 cm. Then the ratio of the area of ΔPQR to the area of ΔPST is
 - (A) 25:4

(B) 25:7

(C) 25:11

(D) 25:13

- 5. The perimeters of two similar triangles $\triangle ABC$ and $\triangle PQR$ are 36 cm and 24 cm respectively. If $PQ = 10 \, cm$, then the length of AB is PTA-5
 - (A) $6\frac{2}{3}cm$
- (B) $\frac{10\sqrt{6}}{3}$ cm (C) $66\frac{2}{3}$ cm
- (D) 15 cm
- 6. If in $\triangle ABC$, $DE \parallel BC$. AB = 3.6 cm, AC = 2.4 cm and AD = 2.1 cm then the length of AE is
 - (A) 1.4 cm
- (B) 1.8 *cm*
- (C) 1.2 cm
- (D) 1.05 cm

JUN-23, JUL-22, SEP-21, PTA-3

- 7. In a \triangle ABC, AD is the bisector of \angle BAC. If AB = 8 cm, BD = 6 cm and DC = 3 cm. The length of the side AC is PTA-6, MAY-22
 - (A) 6 cm
- (B) 4 cm
- (C) 3 cm
- (D) 8 cm
- 8. In the adjacent figure $\angle BAC = 90^{\circ}$ and $AD \perp BC$ then
 - (A) $BD \cdot CD = BC^2$

(B) $AB \cdot AC = BC^2$

(C) $BD \cdot CD = AD^2$

(D) $AB \cdot AC = AD^2$

- 9. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops?
 - (A) 13 m
- (B) 14 m
- (C) 15 m
- (D) 12.8 m
- 10. In the given figure, PR = 26 cm, QR = 24 cm, $\angle PAQ = 90^{\circ}$, $PA = 6 \ cm \ and \ QA = 8 \ cm.$ Find $\angle PQR$

 - (A) 80°

(B) 85°

(C) 75°

 $(D) 90^{\circ}$

- 11. A tangent is perpendicular to the radius at the
 - (A) centre
- **(B)** point of contact (C) infinity
- (D) chord
- 12. How many tangents can be drawn to the circle from an exterior point?
- JUN-23, SEP-21, JUL-22

APR-23,PTA-2

(A) one

- (B) two
- (C) infinite
- (D) zero
- 13. The two tangents from an external points *P* to a circle with centre at *O* are *PA* and *PB*.
 - If $\angle APB = 70^{\circ}$ then the value of $\angle AOB$ is
 - (A) 100°

- (B) 110°
- (C) 120°
- (D) 130°
- 14. If figure *CP* amd *CQ* are tangents to a circle with centre at *O*. ARB is another tangent touching the circle at R. If CP = 11 cmand BC = 7 cm, then the length of BR is
 - (A) 6 cm
- (B) 5 *cm*
- (C) 8 cm
- (D) 4 cm
- 15. In figure if *PR* is tangent to the circle at *P* and *O* is the centre of the circle, then $\angle POQ$ is
 - (A) 120°

(B) 100°

(C) 110°

(D) 90°

Creative MCQ

1. The perimeters of two similar triangles $\triangle ABC$ and $\triangle PQR$ are 36 cm and 24 cm respective. If PQ = 10cm, then the length of AB is (B) $\frac{10\sqrt{6}}{3}$ cm (C) $66\frac{2}{3}$ cm (D) 15 cm

(A)
$$6\frac{2}{3}$$
 cm

(B)
$$\frac{10\sqrt{6}}{3}$$
 cm

(C)
$$66\frac{2}{3}$$
 cm

PTA-5

5 Coordinate Coometry

		5. Cool ullia	te deometry		
		Text Book	Questions		
1.	The area of triangle for	med by the points (–	(5,0), $(0,-5)$ and $(5,0)$) is	SEP-21,PTA-2
	(A) 0 sq. units	(B) 25 sq. units	(C) 5 sq. units	(D) none of t	these
2.	A man walks near a wa	ll, such that the distar	nce between him and	the wall is 10	units.
	consider the wall to be	the Y axis. The path t	ravelled by the man i	S	
	(A) $x = 10$	(B) $y = 10$	(C) x = 0	(D) $y = 0$	
3.	The straight line given	by the equation $x = 3$	11 is	JUN-23	, PTA-1, SEP-20
	(A) Parallel to X axis		(B) parallel to Y axis	;	
	(C) passing through the	e origin	(D) passing through	the point (0,1	11)
4.	If $(5,7)$, $(3,p)$ and $(6,6)$	are collinear then th	e value of p is		PTA-5, MAY-22
	(A) 3	(B) 6	(C) 9	(D) 12	
5.	The point of intersection	on $3x - y = 4$ and $x + 4$	-y = 8 is		PTA-2, JUL-22
	(A)(5,3)	(B) (2,4)	(C)(3,5)	(D) (4,4)	
6.	The slope of the line joi	ning $(12,3)$ and $(4,a)$) is $\frac{1}{8}$ the value of 'a' is	S	PTA-3
	(A) 1	(B) 4	(C) -5	(D) 2	
7.	The slope of the line wh	nich is perpendicular	to line joining the poi	ints $(0,0)$ and	(-8,8) is
	(A) -1	(B) 1	(C) $\frac{1}{3}$	(D) -8	MAY-22
8.	If slope of the line <i>PQ</i> is	$s \frac{1}{\sqrt{3}}$ then the slope of	the perpendicular bis	sector of <i>PQ</i> is	JUN-23
	$(A) \sqrt{3}$	(B) $-\sqrt{3}$	(C) $\frac{1}{\sqrt{3}}$	(D) 0	JUL-22,PTA-6
9.	If <i>A</i> is a point on the <i>Y</i> a	axis whose ordinate is	s 8 and B is a point or	n the <i>X</i> axis w	hose abscissae
	is 5 then the equation of	of the line <i>AB</i> is			
	(A) 8x + 5y = 40	(B) $8x - 5y = 40$	(C) $x = 8$	(D) $y = 5$	
10	. The equation of the line	e passing through the	origin and perpendic	cular to the lir	ne PTA-4
	7x - 3y + 4 = 0 is				_
	(A) $7x - 3y + 4 = 0$		(C) $3x + 7y = 0$	(D) $7x - 3$	y = 0
11.	Consider four straight l		(:::) 1	7 (:) 1 4	
	(i) l_1 ; $3y = 4x + 5$ ((111) l_3 ; $4y + 3x =$	/ (1V) l_4 ; 4	-x + 3y = 2
Which of the following statement is true (A) l_1 and l_2 are perpendicular (B) l_1 and l_4 are parallel					
	(A) l_1 and l_2 are perper (C) l_2 and l_4 are perper		(b) l_1 and l_4 are p (D) l_2 and l_3 are p		
12	. A straight line has equa		\		PTA-3
	(A) The slope is 0.5 and	•	_		
			` / 1	,	

(C) The slope is 0.5 and the y intercept is 1.6 (D) The slope is 5 and the y intercept is 2.6

13. When proving that a quadrilateral is a trapezium it is necessary to show

(A) Two sides are parallel.

(C) Opposite sides are parallel.

(B) Two parallel and two non- parallel sides.

(D) All sides are of equal length.

PTA-4

14. When proving that a quadrilateral is a parallelogram by using slopes you must find (A) The slopes of two sides (C) The length of all sides (D) Both the lengths and slopes of two sides (C) the length of all sides (D) Both the lengths and slopes of two sides (D) Both the lengths and slopes of two sides (D) Both the lengths and slopes of two sides (D) Both the lengths and slopes of two sides (D) Both the lengths and slopes of two sides (D) Both the lengths and slopes of two sides (D) Both the length of all sides (D) Both the length of all sides (D) Both the length of the pole is (D) Doth (D) Both the length of the pole is (D) Both (D)	_		_					
(C) The length of all sides (D) Both the lengths and slopes of two sides 15. (2,1) is the point of intersection of two lines (A) $x-y-3=0, 3x-y-7=0$ (B) $x+y=3, 3x+y=7$ (D) $x+3y-3=0, x-y-7=0$ (D) $x+3y-3=0, x-3=0$ (D) $x+3$	14							
15. (2,1) is the point of intersection of two lines (A) $x - y - 3 = 0$, $3x - y - 7 = 0$ (B) $x + y = 3$, $3x + y = 7$ (C) $3x + y = 3$, $3x + y = 7$ (D) $x + 3y - 3 = 0$, $x - y - 7 = 0$ (Exactive MCQ) 1. The slope of the straight line period cular to $x - axis$ is (A) 1 (B) 0 (C) ∞ (D) -1 2. The perimeter of a triangle formed by the points (0,0), (1,0) and (0,1) is (A) $\sqrt{2}$ (B) 2 (C) $2 + \sqrt{2}$ (D) $2 - \sqrt{2}$ 3. If the points $A(6,1)$, $B(8,2)$, $C(9,4)$ and $D(p,3)$ are the vertices of a parallelogram, taken in order then the value of p is (A) -7 (B) 7 (C) 6 (D) -6 6. Trigonometry Text Book Questions 1. The value of $\sin^2\theta + \frac{1}{1 + \tan^2\theta}$ is equal to (A) $\sec\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) $\cot^2\theta$ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 5. If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) 25 (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (A) $\frac{3}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{3}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan\theta + \sec\theta)(1 + \cot\theta - \csc\theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a\cot\theta + b\csc\theta = p$ and $b\cot\theta + a\csc\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ (PTA-5) 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$:1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° (D)		. ,		· ·				
(A) $x-y-3=0$, $3x-y-7=0$ (B) $x+y=3$, $3x+y=7$ (C) $3x+y=3$, $x+y=7$ (D) $x+3y-3=0$, $x-y-7=0$ (C) $x+3y-3=0$, $x-y-7=0$ (D) $x+3y-3=0$, $x+y-3=0$ (D) $x+3y-3=0$ (D) $x+3y-$	11	• •		` ,	s and slopes of two sides			
Creative MCQ 1. The slope of the straight line perpendicular to x —axis is (A) 1 (B) 0 (C) ∞ (D) —1 2. The perimeter of a triangle formed by the points (0,0), (1,0) and (0,1) is (A) $\sqrt{2}$ (B) 2 (C) 2 + $\sqrt{2}$ (D) 2 - $\sqrt{2}$ 3. If the points $A(6,1)$, $B(8,2)$, $C(9,4)$ and $D(p,3)$ are the vertices of a parallelogram, taken in order then the value of p is (A) —7 (B) 7 (C) 6 (D) —6 6. Trigonometry Text Book Questions 1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (B) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (A) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (B) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (A) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (B) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (B) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (B) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (A) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (B) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (B) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (A) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (B) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (A) $\tan\theta \cos^2\theta - \tan\theta$ is equal to (B) $\tan\theta \cos$	1.	• •			-v=7			
Creative MCQ 1. The slope of the straight line perpendicular to $x - axis$ is (A) 1 (B) 0 (C) ∞ (D) -1 2. The perimeter of a triangle formed by the points $(0,0)$, $(1,0)$ and $(0,1)$ is (A) $\sqrt{2}$ (B) 2 (C) $2 + \sqrt{2}$ (D) $2 - \sqrt{2}$ 3. If the points $A(6,1)$, $B(8,2)$, $C(9,4)$ and $D(p,3)$ are the vertices of a parallelogram, taken in order then the value of p is (A) -7 (B) 7 (C) 6 (D) -6 6. Trigonometry Text Book Questions 1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta\cos^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) $\cot^2\theta$ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \cos\alpha) = a$ and $\sec\theta + \csc\alpha = b$, then the value of k is equal to (A) $2a$ (B) $2a$ (C) 5 (D) 3 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $e^2\theta$ (D) $e^2\theta$ (E) $e^2\theta$ (D) $e^2\theta$ (D) $e^2\theta$ (D) $e^2\theta$ (E) $e^2\theta$ (D) $e^2\theta$ (D		• •						
(A) 1 (B) 0 (C) ∞ (D) -1 2. The perimeter of a triangle formed by the points (0,0), (1,0) and (0,1) is (A) $\sqrt{2}$ (B) 2 (C) $2 + \sqrt{2}$ (D) $2 - \sqrt{2}$ 3. If the points $A(6,1)$, $B(8,2)$, $C(9,4)$ and $D(p,3)$ are the vertices of a parallelogram, taken in order then the value of p is (A) -7 (B) 7 (C) 6 (D) -6 6. Trigonometry Text Book Questions 1. The value of $\sin^2\theta + \frac{1}{1 + \tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) $\cot^2\theta$ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\alpha = b$, then the value of $b(a^2 - 1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{5}{2}$ (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta + \sin^2\theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a\tan\theta$ and $y = b\sec\theta$ then $(A) \frac{x^2}{y^2} = \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan\theta + \sec\theta)(1 + \cot\theta - \csc\theta)$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point b metres) is equal to (A) $\sqrt{3}b$ (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when								
(A) 1 (B) 0 (C) ∞ (D) -1 2. The perimeter of a triangle formed by the points $(0,0), (1,0)$ and $(0,1)$ is $(A)\sqrt{2}$ (B) 2 (C) $2+\sqrt{2}$ (D) $2-\sqrt{2}$ 3. If the points $A(6,1), B(8,2), C(9,4)$ and $D(p,3)$ are the vertices of a parallelogram, taken in order then the value of p is (A) -7 (B) 7 (C) 6 (D) -6 6. Trigonometry Text Book Questions 1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) $\cot^2\theta$ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2-1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) $\frac{2}{3}$ (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (A) $\frac{-3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a\tan\theta$ and $y = b\sec\theta$ then (A) $\frac{y^2}{y^2} - \frac{y^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan\theta + \sec\theta)(1 + \cot\theta - \csc\theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a\cot\theta + b\csc\theta = p$ and $b\cot\theta + a\csc\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$; 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° (D) 60° (PTA-6, SEP-21) 1. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'B' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ (B) $\frac{3}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$	1.	The slope of the straigh	t line perpendicular t	to x —axis is	ΔPR-23			
(A) $\sqrt{2}$ (B) 2 (C) $2+\sqrt{2}$ (D) $2-\sqrt{2}$ 3. If the points $A(6,1)$, $B(8,2)$, $C(9,4)$ and $D(p,3)$ are the vertices of a parallelogram, taken in order then the value of p is (A) -7 (B) 7 (C) 6 (D) -6 Trigonometry Text Book Questions 1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) $\cot^2\theta$ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2-1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) $\frac{3}{2}$ (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a\tan\theta$ and $y = b\sec\theta$ then (A) $\frac{y^2}{b^2} - \frac{y^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan\theta + \sec\theta)(1 + \cot\theta - \csc\theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a\cot\theta + b\csc\theta = p$ and $b\cot\theta + a\csc\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'B' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when		• •	· /	` -	(D)-1			
3. If the points $A(6,1), B(8,2), C(9,4)$ and $D(p,3)$ are the vertices of a parallelogram, taken in order then the value of p is (A) -7 (B) 7 (C) 6 (D) -6 FTA-S 6. Trigonometry Text Book Questions 1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) 2α (B) 3α (C) 5 (D) 3 FTA-1 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) 2α (B) 3α (C) 0 (D) $2ab$ 5. If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) $\frac{-3}{2}$ (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (A) $\frac{-3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a\tan\theta$ and $y = b\sec\theta$ then $(x) \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan\theta + \sec\theta)(1 + \cot\theta - \csc\theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a\cot\theta + b\csc\theta = p$ and $b\cot\theta + a\csc\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ (PTA-5) 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$:1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° (PTA-6, SEP-21) 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60° m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	2.							
order then the value of p is (A) -7 (B) 7 (C) 6 (D) -6 Extrigonometry Text Book Questions 1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) oct θ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) θ (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of θ (C) θ (D) θ		• •	` '	, ,				
(A) -7 (B) 7 (C) 6 (D) -6 6. Trigonometry Text Book Questions 1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) $\cot^2\theta$ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 (PTA-1) 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) 2 a (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) 25 (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a\tan\theta$ and $y = b\sec\theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan\theta + \sec\theta)(1 + \cot\theta - \csc\theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a\cot\theta + b\csc\theta = p$ and $b\cot\theta + a$ cosec $\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ (PTA-5) 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$:1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60°	3.			3) are the vertices of	of a parallelogram, taken in			
1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) $\cot^2\theta$ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) θ (B) θ (C) θ (D)			-	(C) ((D) 6			
Text Book Questions 1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) $\cot^2\theta$ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) 2a (B) 3a (C) 0 (D) 2ab 5. If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) $\frac{25}{2}$ (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (A) $\frac{-3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a\tan\theta$ and $y = b\sec\theta$ then (A) $\frac{y^2}{p^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan\theta + \sec\theta)(1 + \cot\theta - \csc\theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a\cot\theta + b\csc\theta = p$ and $b\cot\theta + a\csc\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'B' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}b$ (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ (D) b		(A) - I	` '	` ,	(D) -6			
1. The value of $\sin^2\theta + \frac{1}{1+\tan^2\theta}$ is equal to (A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) 25 (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a\tan\theta$ and $y = b\sec\theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan\theta + \sec\theta)(1 + \cot\theta - \csc\theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a\cot\theta + b\csc\theta = p$ and $b\cot\theta + a\csc\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}b$ (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	_							
(A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) $\cot^2\theta$ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) 25 (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a\tan\theta$ and $y = b\sec\theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan\theta + \sec\theta)(1 + \cot\theta - \csc\theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a\cot\theta + b\csc\theta = p$ and $b\cot\theta + a\csc\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}b$ (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when		_		k Questions				
(A) $\tan^2\theta$ (B) 1 (C) $\cot^2\theta$ (D) 0 2. $\tan\theta \csc^2\theta - \tan\theta$ is equal to (A) $\sec\theta$ (B) $\cot^2\theta$ (C) $\sin\theta$ (D) $\cot\theta$ 3. If $(\sin\alpha + \csc\alpha)^2 + (\cos\alpha + \sec\alpha)^2 = k + \tan^2\alpha + \cot^2\alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin\theta + \cos\theta = a$ and $\sec\theta + \csc\theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec\theta$ and $\frac{5}{y} = \tan\theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) 25 (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a\tan\theta$ and $y = b\sec\theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan\theta + \sec\theta)(1 + \cot\theta - \csc\theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a\cot\theta + b\csc\theta = p$ and $b\cot\theta + a\csc\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}b$ (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	1.	The value of $\sin^2\theta + \frac{1}{1+}$	$\frac{1}{\tan^2\theta}$ is equal to					
(A) $\sec \theta$ (B) $\cot^2 \theta$ (C) $\sin \theta$ (D) $\cot \theta$ 3. If $(\sin \alpha + \csc \alpha)^2 + (\cos \alpha + \sec \alpha)^2 = k + \tan^2 \alpha + \cot^2 \alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin \theta + \cos \theta = a$ and $\sec \theta + \csc \theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec \theta$ and $\frac{5}{y} = \tan \theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) 25 (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin \theta = \cos \theta$, then $2 \tan^2 \theta + \sin^2 \theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when		(A) $\tan^2 \theta$		(C) $\cot^2 \theta$	(D) 0			
(A) $\sec \theta$ (B) $\cot^2 \theta$ (C) $\sin \theta$ (D) $\cot \theta$ 3. If $(\sin \alpha + \csc \alpha)^2 + (\cos \alpha + \sec \alpha)^2 = k + \tan^2 \alpha + \cot^2 \alpha$, then the value of k is equal to (A) 9 (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin \theta + \cos \theta = a$ and $\sec \theta + \csc \theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec \theta$ and $\frac{5}{y} = \tan \theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) 25 (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin \theta = \cos \theta$, then $2 \tan^2 \theta + \sin^2 \theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a$ cosec $\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'B' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ B (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	2.	$\tan \theta \csc^2 \theta - \tan \theta i$	s equal to		JUN-23,PTA-3			
(A) 9 (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin \theta + \cos \theta = a$ and $\sec \theta + \csc \theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec \theta$ and $\frac{5}{y} = \tan \theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) $\frac{25}{y} = \tan \theta$, then $2\tan \theta + \sin^2 \theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin \theta = \cos \theta$, then $2\tan^2 \theta + \sin^2 \theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when		(A) $\sec \theta$	(B) $\cot^2 \theta$	(C) $\sin \theta$	(
(A) 9 (B) 7 (C) 5 (D) 3 PTA-1 4. If $\sin \theta + \cos \theta = a$ and $\sec \theta + \csc \theta = b$, then the value of $b(a^2 - 1)$ is equal to (A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec \theta$ and $\frac{5}{y} = \tan \theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) $\frac{25}{y} = \tan \theta$, then $2\tan \theta + \sin^2 \theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin \theta = \cos \theta$, then $2\tan^2 \theta + \sin^2 \theta - 1$ is equal to (A) $\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	3.	If $(\sin \alpha + \csc \alpha)^2 + (\cos \alpha)^2$	$(\cos \alpha + \sec \alpha)^2 = k - \frac{1}{2}$	+ $\tan^2 \alpha + \cot^2 \alpha$, the	n the value of k is equal to			
(A) $2a$ (B) $3a$ (C) 0 (D) $2ab$ 5. If $5x = \sec \theta$ and $\frac{5}{y} = \tan \theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) 25 (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin \theta = \cos \theta$, then $2 \tan^2 \theta + \sin^2 \theta - 1$ is equal to (A) $\frac{-3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when								
5. If $5x = \sec \theta$ and $\frac{5}{y} = \tan \theta$, then $x^2 - \frac{1}{y^2}$ is equal to (A) 25 (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin \theta = \cos \theta$, then $2 \tan^2 \theta + \sin^2 \theta - 1$ is equal to (A) $\frac{-3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	4.	If $\sin \theta + \cos \theta = a$ and		then the value of $b(a^2)$	(2-1) is equal to			
(A) 25 (B) $\frac{1}{25}$ (C) 5 (D) 1 6. If $\sin \theta = \cos \theta$, then $2 \tan^2 \theta + \sin^2 \theta - 1$ is equal to (A) $\frac{-3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. (1 + $\tan \theta + \sec \theta$)(1 + $\cot \theta - \csc \theta$) is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when					(D) 2 <i>ab</i>			
6. If $\sin \theta = \cos \theta$, then $2 \tan^2 \theta + \sin^2 \theta - 1$ is equal to $(A) \frac{-3}{2} \qquad (B) \frac{3}{2} \qquad (C) \frac{2}{3} \qquad (D) \frac{-2}{3}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then $(A) \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \qquad (B) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad (C) \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad (D) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to $(A) \ 0 \qquad (B) \ 1 \qquad (C) \ 2 \qquad (D) \ -1$ 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to $(A) \ a^2 - b^2 \qquad (B) \ b^2 - a^2 \qquad (C) \ a^2 + b^2 \qquad (D) \ b - a$ 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure $(A) \ 45^\circ \qquad (B) \ 30^\circ \qquad (C) \ 90^\circ \qquad (D) \ 60^\circ$ 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to $(A) \ \sqrt{3} \ b \qquad (B) \ \frac{b}{3} \qquad (C) \ \frac{b}{2} \qquad (D) \ \frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	5.	If $5x = \sec \theta$ and $\frac{5}{y} = \tan \theta$	$\sin \theta$, then $x^2 - \frac{1}{y^2}$ is θ	equal to	PTA-2			
6. If $\sin \theta = \cos \theta$, then $2 \tan^2 \theta + \sin^2 \theta - 1$ is equal to $(A) \frac{-3}{2} \qquad (B) \frac{3}{2} \qquad (C) \frac{2}{3} \qquad (D) \frac{-2}{3}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then $(A) \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \qquad (B) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad (C) \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad (D) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to $(A) \ 0 \qquad (B) \ 1 \qquad (C) \ 2 \qquad (D) \ -1$ 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to $(A) \ a^2 - b^2 \qquad (B) \ b^2 - a^2 \qquad (C) \ a^2 + b^2 \qquad (D) \ b - a \qquad (PTA-5)$ 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure $(A) \ 45^\circ \qquad (B) \ 30^\circ \qquad (C) \ 90^\circ \qquad (D) \ 60^\circ$ 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to $(A) \ \sqrt{3} \ b \qquad (B) \ \frac{b}{3} \qquad (C) \ \frac{b}{2} \qquad (D) \ \frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when		(A) 25	(B) $\frac{1}{25}$	(C) 5	(D) 1			
(A) $\frac{-3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $\frac{-2}{3}$ 7. If $x = a \tan \theta$ and $y = b \sec \theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	6.	If $\sin \theta = \cos \theta$, then 2 t	23	equal to	ADD 22 DTA 1 4			
7. If $x = a \tan \theta$ and $y = b \sec \theta$ then (A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $a^2 - a^2$ (C) $a^2 + b^2$ (D) $a^2 - b^2$ (E) $a^2 - b^2$ (D) $a^2 - b^2$ (D) $a^2 - b^2$ (E) $a^2 - b^2$ (D) $a^2 - b^2$ (D) $a^2 - b^2$ (E) $a^2 - b^2$ (D) $a^2 - b^2$ (D) $a^2 - b^2$ (E) $a^2 - b^2$ (D) $a^2 - b$		_	•	2	(D) $\frac{-2}{}$			
(A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ 8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	7	2	≟	(3) 3	(3) 3			
8. $(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \csc \theta)$ is equal to (A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	/٠	$11 x = a \tan \theta + a \tan y = 1$	x^2 y^2	$(x^2 + y^2)$	$(x^2)^{-x^2}$ $(x^2)^{-x^2}$			
(A) 0 (B) 1 (C) 2 (D) -1 9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when		b u	u b	u b	(D) $\frac{1}{a^2} - \frac{1}{b^2} = 0$			
9. $a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° PTA-6, SEP-21 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	8.		-	_				
(A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ PTA-5 10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point ' <i>b</i> ' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}b$ (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	0	• /		· /	• /			
 10. If the ratio of the height of a tower and the length of its shadow is √3: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60°. The height of the pole (in metres) is equal to (A) √3 b (B) b/3 (C) b/2 (D) b/√3 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when 	9.							
elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point ' b ' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	10		• •	• •	(D) D U			
(A) 45° (B) 30° (C) 90° (D) 60° 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60° . The height of the pole (in metres) is equal to (A) $\sqrt{3}b$ (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when	10			e length of its shadov				
 11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point 'b' metres above the first, the depression of the foot of the pole is 60°. The height of the pole (in metres) is equal to (A) √3 b (B) b/3 (C) b/2 (D) b/√3 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when 				(C) 90°	(D) 60° PTA-6, SEP-21			
point ' <i>b</i> ' metres above the first, the depression of the foot of the pole is 60°. The height of the pole (in metres) is equal to (A) $\sqrt{3}$ <i>b</i> (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is <i>x</i> metres shorter when the sun's altitude is 45° than when	11	• •		(-) -				
pole (in metres) is equal to (A) $\sqrt{3}$ b (B) $\frac{b}{3}$ (C) $\frac{b}{2}$ (D) $\frac{b}{\sqrt{3}}$ 12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when								
12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when				•	_			
12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when		(A) $\sqrt{3} b$	$(B)\frac{b}{2}$	$(C)\frac{b}{2}$	(D) $\frac{b}{\sqrt{2}}$			
	12	A tower is 60 m height	3	2	γS			
It has been 30°, then x is equal to	14	it has been 30°, then x		o onorter when the ou	MAY-22			
(A) 41.92 m (B) 43.92 m (C) 43 m (D) 45.6 m			•	(C) 43 m				

13.	13. The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two buildings (in meters) is				
	(A) $20,10\sqrt{3}$	(B) $30,5\sqrt{3}$	(C) 20, 10	(D) 30, $10\sqrt{3}$	
14.	double that of the other	. If from the middle po	oint of the line joining	e height of the first person is their feet an observer finds height of the shorter person	
	$(A) \sqrt{2} x$	(B) $\frac{x}{2\sqrt{2}}$	$(C)\frac{x}{\sqrt{2}}$	(D) 2 x	
15.	_	-		is β . The angle of depression	
	of its reflection in the lal	_			
	$(A)\frac{h(1+\tan\beta)}{1-\tan\beta}$	$(B) \frac{h(1-\tan\beta)}{1+\tan\beta}$	(C) $h \tan (45^\circ - \beta)$	(D) none of these	
1			ve MCQ		
1.	If $\tan \theta + \cot \theta = 2$ then ta (A) 0	$n^2\theta + \cot^2\theta$ is equal to (B) 1	(C) 2	(D) 4	
2.	The angle of elevation a (A) Clinometer	nd depression are us (B) kaleidoscope		levice called (D) Telescope	
3.	$\frac{\sin(90^{\circ}-\theta)\sin\theta}{\tan\theta} + \frac{\cos(90^{\circ}-\theta)}{\cot\theta}$	$\frac{\cos \theta}{\cos \theta} =$		PTA-2	
	(A) $\tan \theta$ $\cot \theta$	(B) 1	(C) -1	(D) $\sin \theta$	
		7. Mens	suration		
			Questions		
1.	The curved surface area (A) $60\pi \ cm^2$	a of a right circular co (B) 68π cm²	ne of height 15 <i>cm</i> an (C) 120π cm^2	d base diameter $16 cm$ is (D) $136\pi cm^2$	
2.	curved surface area of t	his new solid is		ether along their bases, then MAY-22	
_	(A) $4\pi r^2$ sq. units			_	
3.	The height of a right circ				
1	(A) 12 cm	(B) 10 cm	(C) 13 cm	(D) 5 cm APR-23,SEP-21 ng the same height, then the	
4.	ratio of the volume of th	ne cylinder thus obtai	ned to the volume of o	original cylinder is JUL-22	
5	(A) 1 : 2 The total surface area of	(B) $1:4$	(C) $1:6$	(D) 1:8 $[PTA-1]$	
J.	(A) $\frac{9\pi h^2}{g}$ sq. units		3		
_	U		,	7	
6.	If its height is 20 cm, the	e volume of the mater	rial in it is	.4 cm and the width is 4 cm . PTA-4	
7	(A) $5600\pi \ cm^3$	• •	(C) $56\pi \ cm^3$	(D) $3600\pi \ cm^3$	
/.	If the radius of the base	-			
8.	(A) made 6 times The total surface area of a		(C) made 12 times	(D) unchanged	
o.	(A) π (B) 4π	-	(D) 2π	JUN-23, PTA-3, SEP-21, JUL-22	

_		,			
9.	A solid sphere of radius The height of the cone is		cast into a shape of a	solid cone o	f same radius.
	(A) $3x cm$	(B) <i>x cm</i>	(C) $4x cm$	(D) 2 <i>x cm</i>	
10.	A frustum of a right circu	` '		` '	<i>m</i> and 20 <i>cm</i> .
	Then, the volume of the	_			
			(C) $3240\pi \ cm^3$	(D) $3340\pi c$	m^3
11	A shuttle cock used for p				110
11.	(A) a cylinder and a sphe		(B) a hemisphere an		
	(C) a sphere and a cone	CIC	(D) frustum of a cone		nhara
12	A spherical ball of radius	r units is maltad to	• •	-	
14.		11 units is mened to	make o new luchtical	Dalis Cacil Of I	
	Then r_1 : r_2 is	(B) 1: 2	(C) 4: 1	(D) 1:4	PTA-6, SEP-20
12	(A) 2: 1 The volume (in am ³) of t	` '		\	lag of wood of
13.	The volume (in cm ³) of t		iat can be cut on moni	a cyllilul icai	log of wood of
	base radius 1 cm and he	_		20	
	$(A)\frac{4}{3}\pi$	(B) $\frac{10}{3}\pi$	(C) 5π	(D) $\frac{20}{3}\pi$	
14.	The height and radius	of the cone of which	the frustum is a par	t are h_1 units	s and r_1 units
	respectively. Height of t		_	_	_
	h_2 : $h_1 = 1:2$ then r_2 : r_1				PTA-2
	(A) 1:3	(B) 1: 2	(C) 2:1	(D) 3:1	I IA-Z
15	The ratio of the volumes	` '		` '	diameter and
13.	same height is	of a cylinder, a cone	and a spilere, if each	ilas tile saille	APR- 23,PTA-5
	G	(D) 2, 1, 2	(C) 1: 3: 2	(D) 3: 1: 2	APR- 25,PTA-5
	(A) 1:2:3	(B) 2: 1: 3	(C) 1: 5: 2	(D) 3: 1: 2	
		Creativ	re MCQ		
1.	The curved surface area	of a right circular con	ne of height 15 <i>cm</i> an	d base diame	ter 16 <i>cm</i> is
		_	(C) $120\pi \ cm^2$		
ว	• •	• •	• •	•	
۷.	If the radius of the cylind	ier is doubled, the he	w volume of the cylind	uer will be	
	original volume	(D) 2	(0) 4	(D) 2	MAY-22
_	(A) Same	(B) 3	(C) 4	(D) 2	
3.	A child reshapes a cone	made up of clay of h	ieight 24 <i>cm</i> and radi	us 6 <i>cm</i> into	
	the radius of sphere is	(=)	4-5	(=)	SEP-20
	(A) 24 cm	(B) 12 cm	(C) 6 cm	(D) 48 cm	
4.	If the volume of sphere i		_		PTA-3
	(A) 3 cm	(B) 2 <i>cm</i>	(C) 5 cm	(D) 10 <i>cm</i>	
5.	C.S.A of solid sphere is e	qual to			PTA-5
	(A) T.S.A of solid sphere		(B) T.S.A of hemisph	ere	FIA-3
	(C) C.S.A of hemisphere		(D) none of these		
		8 Statistics ar	nd Probability		
			Questions		
1.	Which of the following is		-		PTA-6
	(A) Range	(B) Standard deviatio	n (C) Arithmetic mean	(D) Variance	e
2.	The range of the data 8,8	3.8.8.88 is			JUN-23
	(A) 0	(B) 1	(C) 8	(D) 3	JOIN-23
2	• •				
3.	The sum of all deviations (A) Always positive	s of the data from its (B) Always negative		(D) non-zer	o integer

_	•	n	
-			

✓ Way to Success - 10th Maths

_			•		
4.	The mean of 100 observ	rations is 40 and their	standard deviation is	3. The sum of squ	
	observations is	(P) 160000	(C) 160000	(D) 20000	SEP-20
5	(A) 40000 Variance of first 20 natu		(C) 160000	(D) 30000	PTA-5
J.	(A) 32.25		(C) 33.25	(D) 30	PTA-5
6.	The standard deviation			` '	riance is
٠.	(A) 3	(B) 15	(C) 5	(D) 225	10.1100 10
7.	If the standard deviation	n of x, y, z is p then th	e standard deviation	of $3x + 5,3y + 5,3$	z + 5 is
	(A) $3p + 5$	(B) 3 <i>p</i>	(C) $p + 5$	(D) $9p + 15$	
8.	If the mean and coefficien				tion is
_	(A) 3.5	(B) 3	(C) 4.5	(D) 2.5	PTA-1, 4, 5
9.	Which of the following i		(C) D(d) 0		
10	(A) $P(A) > 1$				
10.	The probability a red mamarbles is	ir bie seiecteu at Failut	oni ironi a jai containi	ng p reu, q blue an	
		(P) _ p	$(C) \frac{p+q}{q}$	$(D) \frac{p+r}{}$	JUN-23
			$(C)\frac{p+q}{p+q+r}$		
11.	A page is selected at ra		he probability that th		
	page number chosen is		3	SEP-2	1, JUL-22
	10	10	(C) $\frac{3}{9}$,	
12.	The probability of gettin	g a job for a person is	$\frac{x}{3}$. If the probability of	f not getting the jol	is $\frac{2}{3}$ then
	the value of x is				MAY-22
	(A) 2		(C) 3	(D) 1.5	
13.	Kamalam went to play			-	
	$probability\ of\ kamalam$	winning is $\frac{1}{9}$, then the	number of tickets bo	ught by kamalam i	S
	(A) 5	(B) 10	(C) 15		
14.	If a letter is chosen at ra		h alphabets $\{a, b, \dots, a\}$	z }, then the probal	oility that
	the letter chosen preced		22	APR-2	23,SEP-20
	$(A)\frac{12}{13}$	(B) $\frac{1}{13}$	$(C)\frac{23}{26}$	(D) $\frac{3}{26}$	
15.	A purse contains 10 no	tes of ₹ 2000, 15 not	tes of ₹ 500, and 25 i	notes of ₹ 200. On	e note is
	drawn at random. What	is the probability tha	it the note is either a	₹ 500 note or ₹ 200	onote?
	$(A)\frac{1}{5}$	(B) $\frac{3}{10}$	$(C)^{\frac{2}{3}}$	(D) $\frac{4}{5}$	
	5		ve MCQ	<u> </u>	
1.	If the sum and mean of a			e number of observ	ations in
	the data are:		•		APR-23
	(A) 37	(B) 4477	(C) 396	(D) 418	
2.	The range of first 10 pri				PTA-2
	(A) 9	(B) 20	(C) 27	(D) 5	
3.	A letter is selected at rand				a vowel is
	$(A)\frac{4}{11}$	(B) $\frac{7}{11}$	$(C)\frac{3}{11}$	(D) $\frac{6}{11}$	MDL
4.	Probability of getting 3	heads or 3 tails in tos	sing a coin 3 times is		DTA 4
	$(A)^{\frac{1}{8}}$	(B) $\frac{1}{4}$	$(C)^{\frac{3}{6}}$	(D) $\frac{1}{2}$	PTA-4
5.	A fair die is thrown once	4	0	3	s PTA-6
J.		(B) 0	_	(D) $\frac{1}{6}$	1 1A-0
	(A) 1	(ש) ט	$(C)\frac{5}{6}$	رس 6	