PART-I-1 Mark Questions

1. Relations and Functions

Text Book Questions

Online Test

1. If $n(A \times B)=6$ and $A=\{1,3\}$ then $n(B)$ is
(A) 1
(B) 2
(C) 3
(D) 6

SEP-21
2. $A=\{a, b, p\}, B=\{2,3\}, C=\{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is
(A) 8
(B) 20
(C) 12
(D) 16
3. If $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ then state which of the following statement is true

SEP-20
(A) $(\boldsymbol{A} \times \boldsymbol{C}) \subset(B \times D)$
(B) $(B \times D) \subset(A \times C)$
(C) $(A \times B) \subset(A \times D)$
(D) $(D \times A) \subset(B \times A)$
4. If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set B, then the number of element in B is
(A) 3
(B) 2
(C) 4
(D) 8 JUN-23, PTA-2, JUL-22
5. The range of the relations $R=\left\{\left(x, x^{2}\right) \mid x\right.$ is a prime number less than 13$\}$ is

PTA-4, JUL-22
(A) $\{2,3,5,7\}$
(B) $\{2,3,5,7,11\}$
(C) $\{4,9,25,49,121\}$
(D) $\{1,4,9,25,49,121\}$
6. If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then (a, b) is

PTA-6, MAY-22
(A) $(2,-2)$
(B) $(5,1)$
(C) $(2,3)$
(D) $(3,-2)$
7. Let $n(A)=m$ and $n(B)=n$ then the total number of non-empty relations that can be defined from A to B is
(A) m^{n}
(B) n^{m}
(C) $2^{m n}-1$
(D) $2^{m n}$
8. If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of a and b are respectively.

PTA-1
(A) $(8,6)$
(B) $(8,8)$
(C) $(6,8)$
(D) $(6,6)$
9. Let $A=\{1,2,3,4\}$ and $B=\{4,8,9,10\}$. A function $f: A \rightarrow B$ given by $f=\{(1,4),(2,8),(3,9),(4,10)\}$ is a
(A) Many-one function
(B) Identity function
PTA-4
(C) One-to-one function
(D) Into function
10. If $f(x)=2 x^{2}$ and $g(x)=\frac{1}{3 x}$, then $f \circ g$ is
(A) $\frac{3}{2 x^{2}}$
(B) $\frac{2}{3 x^{2}}$
(C) $\frac{2}{9 x^{2}}$
(D) $\frac{1}{6 x^{2}}$
11. If $f: A \rightarrow B$ is a bijective function and if $n(B)=7$, then $n(A)$ is equal to

PTA-2
(A) 7
(B) 49
(C) 1
(D) 14
12. Let f and g be two functions given by $f=\{(0,1),(2,0),(3,-4),(4,2),(5,7)\}$ and $g=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$ then the range of $f \circ g$ is
(A) $\{0,2,3,4,5\}$
(B) $\{-4,1,0,2,7\}$
(C) $\{1,2,3,4,5\}$
(D) $\{0,1,2\}$
13. Let $f(x)=\sqrt{1+x^{2}}$ then
(A) $f(x y)=f(x) \cdot f(y)$
(B) $f(x y) \geq f(x) \cdot f(y)$
(C) $\boldsymbol{f}(\boldsymbol{x y}) \leq \boldsymbol{f}(\boldsymbol{x}) \cdot \boldsymbol{f}(\boldsymbol{y})$
(D) None of these
14. If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha x+\beta$ then the values of α and β are
(A) $(-1,2)$
(B) $(2,-1)$
(C) $(-1,-2)$
(D) $(1,2)$
PTA-6
15. $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
(A) linear
(B) cubic
(C) reciprocal
(D) quadratic
PTA-5

Creative MCQ

1. Let $f(x)=x^{2}-x$, then $f(x-1)-f(x+1)$ is
(A) $4 x$
(B) $2-2 x$
(C) $2-4 x$
(D) $4 x-2$
2. If $n(A)=p, n(B)=q$ then the total number of relations that exist between A and B is
(A) 2^{p}
(B) 2^{q}
(C) 2^{p+q}
(D) $2^{p q}$
3. Given $f(x)=(-1)^{x}$ is a function from \mathbb{N} to \mathbb{Z}. Then the range of f is
(A) $\{1\}$
(B) \mathbb{N}
(C) $\{1,-1\}$
(D) \mathbb{Z}
4. The given diagram represents
(A) an onto function
(B) a constant function
(C) an one-one function
(D) not a function

2. Numbers and Sequences

Text Book Questions

1. Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that $a=b q+r$, where r must satisfy
(A) $1<r<b$
(B) $0<r<b$
(C) $0 \leq r<b$
(D) $0<r \leq b$
2. Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are

PTA-5, SEP-20
(A) $0,1,8$
(B) $1,4,8$
(C) $0,1,3$
(D) $1,3,5$
3. If the HCF of 65 and 117 is expressible in the form of $65 m-117$, then the value of m is
(A) 4
(B) 2
(C) 1
(D) 3

MAY-22
4. The sum of the exponents of the prime factors in the prime factorization of 1729 is
(A) 1
(B) 2
(C) 3
(D) 4
SEP-21,PTA-4,JUL-22
5. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(A) 2025
(B) 5220
(C) 5025
(D) 2520
6. $7^{4 k} \equiv$ \qquad $(\bmod 100)$

JUN-23, PTA-1
(A) 1
(B) 2
(C) 3
(D) 4
7. Given $F_{1}=1, F_{2}=3$ and $F_{n}=F_{n-1}+F_{n-2}$ then F_{5} is

APR-23, SEP-21, MDL
(A) 3
(B) 5
(C) 8
(D) 11
8. The first term of an arithmetic progression is unity and the common difference is 4 . Which of the following will be a term of this A.P.
(A) 4551
(B) 10091
(C) 7881
(D) 13531
9. If 6 times of $6^{\text {th }}$ term of an A.P is equal to 7 times the $7^{\text {th }}$ term, then the $13^{\text {th }}$ terms of the A.P is
(A) 0
(B) 6
(C) 7
(D) 13
PTA-4
10. An A.P consists of 31 terms. It is $16^{\text {th }}$ term is m, then the sum of all the terms of this A.P is
(A) 16 m
(B) 62 m
(C) 31 m
(D) $\frac{31}{2} \mathrm{~m}$
PTA-5
11. In an A.P., the first term is 1 and the common difference is 4 . How many terms of the A.P must be taken for their sum to be equal to 120 ?
(A) 6
(B) 7
(C) 8
(D) 9
12. If $A=2^{65}$ and $B=2^{64}+2^{63}+2^{62}+\cdots+2^{0}$ which of the following is true?

PTA-6, SEP-20
(A) B is 2^{64} more than A
(B) A and B are equal
(C) B is larger than A by 1
(D) A is larger than B by 1
13. The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \ldots$ is
(A) $\frac{1}{24}$
(B) $\frac{1}{27}$
(C) $\frac{2}{3}$
(D) $\frac{1}{81}$
14. If the sequence $t_{1}, t_{2}, t_{3}, \ldots$. are in A.P then the sequence $t_{6}, t_{12}, t_{18}, \ldots$ is

APR-23
(A) a Geometric Progression
(B) an Arithmetic Progression
(C) neither an Arithmetic Progression nor a Geometric Progression
(D) a constant sequence
15. The value of $\left(1^{3}+2^{3}+3^{3}+\cdots+15^{3}\right)-(1+2+3+\cdots+15)$ is

PTA-3
(A) 14400
(B) 14200
(C) 14280
(D) 14520

Creative MCQ

1. The next term of the sequence $\frac{1}{2}, \frac{1}{6}, \frac{1}{10}, \frac{1}{14}, \ldots$ is

JUN-23
(A) $\frac{1}{15}$
(B) $\frac{1}{16}$
(C) $\frac{1}{18}$
(D) $\frac{1}{20}$
2. If t_{n} is the $\mathrm{n}^{\text {th }}$ term of an A.P., then $t_{8 n}-t_{n}$ is
(A) $(8 n-1) d$
(B) $(8 n-2) d$
(C) $(7 n-2) d$
(D) $(7 n d)$

MAY-22
3. The sequence $-3,-3,-3$ \qquad is

PTA-1
(A) An A.P only
(B) a G.P only
(C) Neither A.P nor G.P
(D) both A.P and G.P
4. If $2+4+6+\cdots+2 k=90$, then the value of k is

PTA-3
(A) 8
(B) 9
(C) 10
(D) 11

5 If a and b are two positive integers where $a>0$ and b is a factor of a, then HCF of a and b is
(A) b
(B) a
(C) $3 a b$
(D) $\frac{a}{b}$

PTA-4
6. If a, b, c are in A.P then $\frac{a-b}{b-c}$ is equal to
(A) $\frac{a}{b}$
(B) $\frac{b}{c}$
(C) $\frac{a}{c}$
(D) 1

3. Algebra

Text Book Questions

1. A system of three linear equations in three variables is inconsistent if their planes
(A) intersect only at a point
(B) intersect in a line
(C) coincides with each other
(D) do not intersect

PTA-1, JUL-22
2. The solution of the system $x+y-3 z=-6,-7 y+7 z=7,3 z=9$ is
(A) $x=1, y=2, z=3$
(B) $x=-1, y=2, z=3$
(C) $x=-1, y=-2, z=3$
(D) $x=1, y=-2, z=3$
3. If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is

PTA-4, MAY-22
(A) 3
(B) 5
(C) 6
(D) 8
4. $\frac{3 y-3}{y} \div \frac{7 y-7}{3 y^{2}}$ is
(A) $\frac{9 y}{7}$
(B) $\frac{9 y^{3}}{21 y-21}$
(C) $\frac{21 y^{2}-42 y+21}{3 y^{3}}$
(D) $\frac{7\left(y^{2}-2 y+1\right)}{y^{2}}$
5. $y^{2}+\frac{1}{y^{2}}$ is not equal to
(A) $\frac{y^{4}+1}{y^{2}}$
(B) $\left(y+\frac{1}{y}\right)^{2}$
(C) $\left(y-\frac{1}{y}\right)^{2}+2$
(D) $\left(y+\frac{1}{y}\right)^{2}-2$
6. $\frac{x}{x^{2}-25}-\frac{8}{x^{2}+6 x+5}$ gives
(A) $\frac{x^{2}-7 x+40}{(x-5)(x+5)}$
(B) $\frac{x^{2}+7 x+40}{(x-5)(x+5)(x+1)}$
(C) $\frac{x^{2}-7 x+40}{\left(x^{2}-25\right)(x+1)}$
(D) $\frac{x^{2}+10}{\left(x^{2}-25\right)(x+1)}$
7. The square root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ is equal to

SEP-21
(A) $\frac{16}{5}\left|\frac{x^{2} z^{4}}{y^{2}}\right|$
(B) $16\left|\frac{y^{2}}{x^{2} z^{4}}\right|$
(C) $\frac{16}{5}\left|\frac{y}{x z^{2}}\right|$
(D) $\frac{16}{5}\left|\frac{x z^{2}}{y}\right|$
8. Which of the following should be added to make $x^{4}+64$ a perfect square
(A) $4 x^{2}$
(B) $16 x^{2}$
(C) $8 x^{2}$
(D) $-8 x^{2}$

MAY-22
9. The solution of $(2 x-1)^{2}=9$ is equal to
(A) -1
(B) 2
(C) $-1,2$
(D) None of these
10. The values of a and b if $4 x^{4}-24 x^{3}+76 x^{2}+a x+b$ is a perfect square are
(A) 100,120
(B) 10,12
(C) $\mathbf{- 1 2 0 , 1 0 0}$
(D) 12,10
11. If the roots of the equation $q^{2} x^{2}+p^{2} x+r^{2}=0$ are the squares of the roots of the equation $q x^{2}+p x+r=0$, then q, p, r are in \qquad
(A) A. P
(B) $\boldsymbol{G} . \boldsymbol{P}$
(C) Both A.P and G.P
(D) None of these
12. Graph of a linear equation is a

JUN-23, SEP-21, PTA-2
(A) Straight line
(B) circle
(C) parabola
(D) hyperbola
13. The number of points of intersection of the quadratic polynomial $x^{2}+4 x+4$ with the X axis is
(A) 0
(B) 1
(C) 0 or 1
(D) -2

MAY-22
14. For the given matrix $A=\left[\begin{array}{ccrl}1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15\end{array}\right]$ the order of the matrix A^{T} is
(A) 2×3
(B) 3×2
(C) 3×4
(D) 4×3
15. If A is 2×3 matrix and B is a 3×4 matrix, how many columns does $A B$ have
(A) 3
(B) 4
(C) 2
(D) 5
16. If number of columns and rows are not equal in a matrix then it is said to be a
(A) diagonal matrix
(B) rectangular matrix
(C) square matrix
(D) identity matrix
17. Transpose of a column matrix is

SEP-20
(A) unit matrix
(B) diagonal matrix
(C) column matrix
(D) row matrix
18. Find the matrix X if $2 X+\left[\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}5 & 7 \\ 9 & 5\end{array}\right]$
(A) $\left[\begin{array}{cc}-2 & -2 \\ 2 & -1\end{array}\right]$
(B) $\left[\begin{array}{cc}2 & 2 \\ 2 & -1\end{array}\right]$
(C) $\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$
(D) $\left[\begin{array}{ll}2 & 1 \\ 2 & 2\end{array}\right]$
19. Which of the following can be calculated from the given matrices
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right], B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$,
(i) A^{2}
(ii) B^{2}
(iii) $A B$ (iv) $B A$
(A) (i) and (ii) only
(B) (ii) and (iii) only
(C) (ii) and (iv) only
(D) all of these
20. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 2 & -1 \\ 0 & 2\end{array}\right]$ and $C=\left[\begin{array}{cc}0 & 1 \\ -2 & 5\end{array}\right]$. Which of the following statements are correct?
(i) $A B+C=\left[\begin{array}{ll}5 & 5 \\ 5 & 5\end{array}\right]$
(ii) $B C=\left[\begin{array}{cc}0 & 1 \\ 2 & -3 \\ -4 & 10\end{array}\right]$
(iii) $B A+C=\left[\begin{array}{ll}2 & 5 \\ 3 & 0\end{array}\right]$
(iv) $(A B) C=\left[\begin{array}{ll}-8 & 20 \\ -8 & 13\end{array}\right]$
(A) (i) and (ii) only
(B) (ii) and (iii) only
(C) (ii) and (iv) only
(D) all of these

Creative MCQ

1. Graph of a quadratic equation is \qquad
(A) Straight line
(B) Circle
(C) Parabola
(D) Hyperbola
2. The G.C.D of a^{m}, a^{m+1}, a^{m+2} is

SEP-21
(A) a^{m}
(B) a^{m+1}
(C) a^{m+2}
(D) 1
3. $\frac{a^{2}}{a^{2}-b^{2}}+\frac{b^{2}}{b^{2}-a^{2}}=$
(A) $a-b$
(B) $a+b$
(C) $a^{2}-b^{2}$
(D) 1
4. The non- diagonal elements in any unit matrix are \qquad
(A) 0
(B) 1
(C) m
(D) n
5. The LCM of $x^{3}-a^{3}$ and $(x-a)^{2}$ is
(A) $\left(x^{3}-a^{3}\right)(x+a)$
(B) $\left(x^{3}-a^{3}\right)(x-a)^{2}$
(C) $(x-a)^{2}\left(x^{2}+a x+a^{2}\right)$
(D) $(x+a)^{2}\left(x^{2}+a x+a^{2}\right)$
6. The excluded value of the rational expression $\frac{x^{3}+8}{x^{2}-2 x-8}$ is
(A) 8
(B) 2
(C) 4
(D) 1
7. If a polynomial is a perfect square then its factors will be repeated \qquad number of times PTA-4
(A) Odd
(B) zero
(C) even
(D) none of the above
8. $\frac{3 y-3}{y} \div \frac{7 y-7}{3 y^{2}}$ is
(A) $\frac{9 y}{7}$
(B) $\frac{9 y^{3}}{21 y-21}$
(C) $\frac{21 y^{2}-42 y+21}{3 y^{3}}$
(D) $\frac{7\left(y^{2}-2 y+1\right)}{y^{2}}$
9. The solution of $x^{2}-25=0$ is
(A) No real roots
(B) real and equal roots
(C) Real and unequal roots
(D) imaginary roots

PTA-5
10. For the given matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$ the order of the matrix $\left(A^{T}\right)^{T}$ is

PTA-5
(A) 2×3
(B) 3×2
(C) 3×4
(D) 4×3
11. On dividing $\frac{x^{2}-25}{x+3}$ by $\frac{x+5}{x^{2}-9}$
(A) $(x-5)(x-3)$
(B) $(x-5)(x+3)$
(C) $(x+5)(x-3)$
(D) $(x+5)(x+3)$

PTA-6

4. Geometry

Text Book Questions

1. If in triangles $A B C$ and $E D F, \frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when

APR-23
(A) $\angle B=\angle E$
(B) $\angle A=\angle D$
(C) $\angle B=\angle D$
(D) $\angle A=\angle F$
2. In $\triangle L M N, \angle L=60^{\circ}, \angle M=50^{\circ}$. If $\triangle L M N \sim \triangle P Q R$ then the value of $\angle R$ is
(A) 40°
(B) 70°
(C) 30°
(D) 110°

SEP-20
3. If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $A C=5 \mathrm{~cm}$, then $A B$ is

PTA-4, MAY-22
(A) 2.5 cm
(B) 5 cm
(C) 10 cm
(D) $5 \sqrt{2} \mathrm{~cm}$
4. In a given figure $S T \| Q R, P S=2 \mathrm{~cm}$ and $S Q=3 \mathrm{~cm}$. Then the ratio of the area of $\triangle P Q R$ to the area of $\triangle P S T$ is
(A) $25: 4$
(B) $25: 7$
(C) $25: 11$
(D) $25: 13$

5. The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. If $P Q=10 \mathrm{~cm}$, then the length of $A B$ is

PTA-5
(A) $6 \frac{2}{3} \mathrm{~cm}$
(B) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
(C) $66 \frac{2}{3} \mathrm{~cm}$
(D) 15 cm
6. If in $\triangle A B C, D E \| B C . A B=3.6 \mathrm{~cm}, A C=2.4 \mathrm{~cm}$ and $A D=2.1 \mathrm{~cm}$ then the length of $A E$ is
(A) 1.4 cm
(B) 1.8 cm
(C) 1.2 cm
(D) 1.05 cm
JUN-23, JUL-22, SEP-21, PTA-3
7. In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}, B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$. The length of the side $A C$ is

PTA-6, MAY-22
(A) 6 cm
(B) 4 cm
(C) 3 cm
(D) 8 cm
8. In the adjacent figure $\angle B A C=90^{\circ}$ and $A D \perp B C$ then
(A) $B D \cdot C D=B C^{2}$
(B) $A B \cdot A C=B C^{2}$
(C) $\boldsymbol{B D} \cdot \boldsymbol{C D}=\boldsymbol{A D} \boldsymbol{D}^{2}$
(D) $A B \cdot A C=A D^{2}$

9. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m , what is the distance between their tops?
(A) $\mathbf{1 3} \mathrm{m}$
(B) 14 m
(C) 15 m
(D) 12.8 m
10. In the given figure, $P R=26 \mathrm{~cm}, Q R=24 \mathrm{~cm}, \angle P A Q=90^{\circ}$, $P A=6 \mathrm{~cm}$ and $Q A=8 \mathrm{~cm}$. Find $\angle P Q R$
(A) 80°
(B) 85°
(C) 75°
(D) 90°

PTA-6
11. A tangent is perpendicular to the radius at the

APR-23,PTA-2
(A) centre
(B) point of contact (C) infinity
(D) chord
12. How many tangents can be drawn to the circle from an exterior point?

JUN-23, SEP-21, JUL-22
(A) one
(B) two
(C) infinite
(D) zero
13. The two tangents from an external points P to a circle with centre at O are $P A$ and $P B$. If $\angle A P B=70^{\circ}$ then the value of $\angle A O B$ is
(A) 100°
(B) $\mathbf{1 1 0}^{\circ}$
(C) 120°
(D) 130°
14. If figure $C P$ amd $C Q$ are tangents to a circle with centre at O. $A R B$ is another tangent touching the circle at R. If $C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the length of $B R$ is
(A) 6 cm
(B) 5 cm
(C) 8 cm
(D) 4 cm
15. In figure if $P R$ is tangent to the circle at P and O is the centre of the circle, then $\angle P O Q$ is
(A) 120°
(B) 100°
(C) 110°
(D) 90°

SEP-20

Creative MCQ

1. The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respective. If $P Q=10 \mathrm{~cm}$, then the length of $A B$ is
(A) $6 \frac{2}{3} \mathrm{~cm}$
(B) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
(C) $66 \frac{2}{3} \mathrm{~cm}$
(D) 15 cm

5. Coordinate Geometry

Text Book Questions

1. The area of triangle formed by the points $(-5,0),(0,-5)$ and $(5,0)$ is

SEP-21,PTA-2
(A) 0 sq. units
(B) 25 sq. units
(C) 5 sq. units
(D) none of these
2. A man walks near a wall, such that the distance between him and the wall is 10 units. consider the wall to be the Y axis. The path travelled by the man is
(A) $x=10$
(B) $y=10$
(C) $x=0$
(D) $y=0$
3. The straight line given by the equation $x=11$ is

JUN-23, PTA-1, SEP-20
(A) Parallel to X axis
(B) parallel to Y axis
(C) passing through the origin
(D) passing through the point $(0,11)$
4. If $(5,7),(3, p)$ and $(6,6)$ are collinear then the value of p is

PTA-5, MAY-22
(A) 3
(B) 6
(C) 9
(D) 12
5. The point of intersection $3 x-y=4$ and $x+y=8$ is

PTA-2, JUL-22
(A) $(5,3)$
(B) $(2,4)$
(C) $(3,5)$
(D) $(4,4)$
6. The slope of the line joining $(12,3)$ and $(4, a)$ is $\frac{1}{8}$ the value of ' a ' is
(A) 1
(B) 4
(C) -5
(D) 2
7. The slope of the line which is perpendicular to line joining the points $(0,0)$ and $(-8,8)$ is
(A) -1
(B) 1
(C) $\frac{1}{3}$
(D) -8
MAY-22
8. If slope of the line $P Q$ is $\frac{1}{\sqrt{3}}$ then the slope of the perpendicular bisector of $P Q$ is

> JUN-23
(A) $\sqrt{3}$
(B) $-\sqrt{3}$
(C) $\frac{1}{\sqrt{3}}$
(D) 0

JUL-22,PTA-6
9. If A is a point on the Y axis whose ordinate is 8 and B is a point on the X axis whose abscissae is 5 then the equation of the line $A B$ is
(A) $8 x+5 y=40$
(B) $8 x-5 y=40$
(C) $x=8$
(D) $y=5$
10. The equation of the line passing through the origin and perpendicular to the line

PTA-4 $7 x-3 y+4=0$ is
(A) $7 x-3 y+4=0$
(B) $3 x-7 y+4=0$
(C) $3 x+7 y=0$
(D) $7 x-3 y=0$
11. Consider four straight lines
(i) $l_{1} ; 3 y=4 x+5$
(ii) $l_{2} ; 4 y=3 x-1$
(iii) $l_{3} ; 4 y+3 x=7$
(iv) $l_{4} ; 4 x+3 y=2$

Which of the following statement is true
(A) l_{1} and l_{2} are perpendicular
(B) l_{1} and l_{4} are parallel
(C) l_{2} and l_{4} are perpendicular
(D) l_{2} and l_{3} are parallel
12. A straight line has equation $8 y=4 x+21$ which of the following is true.
(A) The slope is 0.5 and the y intercept is 2.6 (B) The slope is 5 and the y intercept is 1.6
(C) The slope is 0.5 and the y intercept is 1.6
(D) The slope is 5 and the y intercept is 2.6
13. When proving that a quadrilateral is a trapezium it is necessary to show

PTA-4
(A) Two sides are parallel.
(B) Two parallel and two non- parallel sides.
(C) Opposite sides are parallel.
(D) All sides are of equal length.
14. When proving that a quadrilateral is a parallelogram by using slopes you must find
(A) The slopes of two sides
(B) The slopes of two pair of opposite sides
(C) The length of all sides
(D) Both the lengths and slopes of two sides
15. $(2,1)$ is the point of intersection of two lines
(A) $x-y-3=0,3 x-y-7=0$
(B) $x+y=3,3 x+y=7$
(C) $3 x+y=3, x+y=7$
(D) $x+3 y-3=0, x-y-7=0$

Creative MCQ

1. The slope of the straight line perpendicular to x-axis is
(A) 1
(B) 0
(C) ∞
(D) -1

APR-23
2. The perimeter of a triangle formed by the points $(0,0),(1,0)$ and $(0,1)$ is

SEP-21
(A) $\sqrt{2}$
(B) 2
(C) $2+\sqrt{2}$
(D) $2-\sqrt{2}$
3. If the points $A(6,1), B(8,2), C(9,4)$ and $D(p, 3)$ are the vertices of a parallelogram, taken in order then the value of p is
(A) -7
(B) 7
(C) 6
(D) -6

PTA-5

6. Trigonometry

Text Book Questions

1. The value of $\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}$ is equal to
(A) $\tan ^{2} \theta$
(B) 1
(C) $\cot ^{2} \theta$
(D) 0
2. $\tan \theta \operatorname{cosec}^{2} \theta-\tan \theta$ is equal to

JUN-23,PTA-3
(A) $\sec \theta$
(B) $\cot ^{2} \theta$
(C) $\sin \theta$
(D) $\cot \boldsymbol{\theta}$
3. If $(\sin \alpha+\operatorname{cosec} \alpha)^{2}+(\cos \alpha+\sec \alpha)^{2}=k+\tan ^{2} \alpha+\cot ^{2} \alpha$, then the value of k is equal to
(A) 9
(B) 7
(C) 5
(D) 3
PTA-1
4. If $\sin \theta+\cos \theta=a$ and $\sec \theta+\operatorname{cosec} \theta=b$, then the value of $b\left(a^{2}-1\right)$ is equal to
(A) $2 a$
(B) $3 a$
(C) 0
(D) $2 a b$
5. If $5 x=\sec \theta$ and $\frac{5}{y}=\tan \theta$, then $x^{2}-\frac{1}{y^{2}}$ is equal to

PTA-2
(A) 25
(B) $\frac{1}{25}$
(C) 5
(D) 1
6. If $\sin \theta=\cos \theta$, then $2 \tan ^{2} \theta+\sin ^{2} \theta-1$ is equal to

APR-23, PTA-1, 4
(A) $\frac{-3}{2}$
(B) $\frac{3}{2}$
(C) $\frac{2}{3}$
(D) $\frac{-2}{3}$
7. If $x=a \tan \theta$ and $y=b \sec \theta$ then
(A) $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$
(B) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
(C) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(D) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$
8. $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$ is equal to
(A) 0
(B) 1
(C) 2
(D) -1
9. $a \cot \theta+b \operatorname{cosec} \theta=p$ and $b \cot \theta+a \operatorname{cosec} \theta=q$ then $p^{2}-q^{2}$ is equal to
(A) $a^{2}-b^{2}$
(B) $b^{2}-a^{2}$
(C) $a^{2}+b^{2}$
(D) $b-a$
PTA-5
10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}: 1$, then the angle of elevation of the sun has measure
(A) 45°
(B) 30°
(C) 90°
(D) 60°

PTA-6, SEP-21
11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point ' b ' metres above the first, the depression of the foot of the pole is 60°. The height of the pole (in metres) is equal to
(A) $\sqrt{3} b$
(B) $\frac{b}{3}$
(C) $\frac{b}{2}$
(D) $\frac{b}{\sqrt{3}}$
12. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when it has been 30°, then x is equal to

MAY-22
(A) 41.92 m
(B) 43.92 m
(C) 43 m
(D) 45.6 m
13. The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two buildings (in meters) is
(A) $20,10 \sqrt{3}$
(B) $30,5 \sqrt{3}$
(C) 20,10
(D) $30,10 \sqrt{3}$
14. Two persons are standing ' x ' metres apart from each other and the height of the first person is double that of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the shorter person (in metres) is
(A) $\sqrt{2} x$
(B) $\frac{x}{2 \sqrt{2}}$
(C) $\frac{x}{\sqrt{2}}$
(D) $2 x$
15. The angle of elevation of a cloud from a point h metres above a lake is β. The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is

JUL-22
(A) $\frac{h(1+\tan \beta)}{1-\tan \beta}$
(B) $\frac{h(1-\tan \beta)}{1+\tan \beta}$
(C) $h \tan \left(45^{\circ}-\beta\right)$
(D) none of these

Creative MCQ

1. If $\tan \theta+\cot \theta=2$ then $\tan ^{2} \theta+\cot ^{2} \theta$ is equal to
(A) 0
(B) 1
(C) 2
(D) 4
2. The angle of elevation and depression are usually measured by a device called
(A) Clinometer
(B) kaleidoscope
(C) Periscope
(D) Telescope
3. $\frac{\sin \left(90^{\circ}-\theta\right) \sin \theta}{\tan \theta}+\frac{\cos \left(90^{\circ}-\theta\right) \cos \theta}{\cot \theta}=$
(A) $\tan \theta$
(B) 1
(C) -1
(D) $\sin \theta$

7. Mensuration

Text Book Questions

1. The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm is
(A) $60 \pi \mathrm{~cm}^{2}$
(B) $68 \pi \mathrm{~cm}^{2}$
(C) $120 \pi \mathrm{~cm}^{2}$
(D) $136 \pi \mathrm{~cm}^{2}$
2. If two solid hemispheres of same base radius r units are joined together along their bases, then curved surface area of this new solid is

MAY-22
(A) $4 \pi r^{2}$ sq. units
(B) $6 \pi r^{2}$ sq. units
(C) $3 \pi r^{2}$ sq. units
(D) $8 \pi r^{2}$ sq. units
3. The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be
(A) 12 cm
(B) 10 cm
(C) 13 cm
(D) 5 cm

APR-23,SEP-21
4. If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is

JUL-22
(A) $1: 2$
(B) $1: 4$
(C) $1: 6$
(D) $1: 8$
5. The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is

PTA-1
(A) $\frac{9 \pi h^{2}}{8}$ sq. units
(B) $24 \pi h^{2}$ sq. units
(C) $\frac{8 \pi h^{2}}{9}$ sq. units
(D) $\frac{56 \pi h^{2}}{9}$ sq. units
6. In a hollow cylinder, the sum of the external and internal radii is 14 cm and the width is 4 cm . If its height is 20 cm , the volume of the material in it is

PTA-4
(A) $5600 \pi \mathrm{~cm}^{3}$
(B) $1120 \pi \mathrm{~cm}^{3}$
(C) $56 \pi \mathrm{~cm}^{3}$
(D) $3600 \pi \mathrm{~cm}^{3}$
7. If the radius of the base of a cone is tripled and the height is doubled then the volume is
(A) made 6 times
(B) made 18 times
(C) made 12 times
(D) unchanged
8. The total surface area of a hemi-sphere is how much times the square of its radius.
(A) π
(B) 4π
(C) 3π
(D) 2π

JUN-23, PTA-3, SEP-21, JUL-22
9. A solid sphere of radius $x \mathrm{~cm}$ is melted and cast into a shape of a solid cone of same radius. The height of the cone is
(A) $3 x \mathrm{~cm}$
(B) $x \mathrm{~cm}$
(C) $4 x \mathrm{~cm}$
(D) $2 x \mathrm{~cm}$
10. A frustum of a right circular cone is of height 16 cm with radii of its ends as 8 cm and 20 cm . Then, the volume of the frustum is
(A) $3328 \pi \mathrm{~cm}^{3}$
(B) $3228 \pi \mathrm{~cm}^{3}$
(C) $3240 \pi \mathrm{~cm}^{3}$
(D) $3340 \pi \mathrm{~cm}^{3}$
11. A shuttle cock used for playing badminton has the shape of the combination of
(A) a cylinder and a sphere
(B) a hemisphere and a cone
(C) a sphere and a cone
(D) frustum of a cone and a hemisphere
12. A spherical ball of radius r_{1} units is melted to make 8 new identical balls each of radius r_{2} units. Then $r_{1}: r_{2}$ is
(A) $2: 1$
(B) $1: 2$
(C) $4: 1$
(D) $1: 4$
13. The volume (in cm^{3}) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is
(A) $\frac{4}{3} \pi$
(B) $\frac{10}{3} \pi$
(C) 5π
(D) $\frac{20}{3} \pi$
14. The height and radius of the cone of which the frustum is a part are h_{1} units and r_{1} units respectively. Height of the frustum is h_{2} units and radius of the smaller base is r_{2} units. If $h_{2}: h_{1}=1: 2$ then $r_{2}: r_{1}$ is
(A) $1: 3$
(B) $1: 2$
(C) $2: 1$
(D) $3: 1$
15. The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height is
(A) $1: 2: 3$
(B) $2: 1: 3$
(C) $1: 3: 2$
(D) $3: 1: 2$

Creative MCQ

1. The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm is
(A) $60 \pi \mathrm{~cm}^{2}$
(B) $66 \pi \mathrm{~cm}^{2}$
(C) $120 \pi \mathrm{~cm}^{2}$
(D) $136 \pi \mathrm{~cm}^{2}$
JUN -23
2. If the radius of the cylinder is doubled, the new volume of the cylinder will be \qquad times the original volume

MAY-22
(A) Same
(B) 3
(C) 4
(D) 2
3. A child reshapes a cone made up of clay of height 24 cm and radius 6 cm into a sphere, then the radius of sphere is

SEP-20
(A) 24 cm
(B) 12 cm
(C) 6 cm
(D) 48 cm
4. If the volume of sphere is $36 \pi \mathrm{~cm}^{3}$, then its radius is equal to
(A) 3 cm
(B) 2 cm
(C) 5 cm
(D) 10 cm
5. C.S.A of solid sphere is equal to
(A) T.S.A of solid sphere
(B) T.S.A of hemisphere
(C) C.S.A of hemisphere
(D) none of these

APR-23,PTA-5
4. The mean of 100 observations is 40 and their standard deviation is 3 . The sum of squares of all observations is

SEP-20
(A) 40000
(B) 160900
(C) 160000
(D) 30000
5. Variance of first 20 natural numbers is
(C) 33.25
(D) 30
(A) 32.25
(B) 44.25
6. The standard deviation of a data is 3 . If each value is multiplied by 5 then the new variance is
(A) 3
(B) 15
(C) 5
(D) 225
7. If the standard deviation of x, y, z is p then the standard deviation of $3 x+5,3 y+5,3 z+5$ is
(A) $3 p+5$
(B) $3 p$
(C) $p+5$
(D) $9 p+15$
8. If the mean and coefficient of variation of a data are 4 and 87.5% then the standard deviation is
(A) 3.5
(B) 3
(C) 4.5
(D) 2.5

PTA-1, 4, 5
9. Which of the following is incorrect?
(A) $P(A)>1$
(B) $0 \leq P(A) \leq 1$
(C) $P(\varnothing)=0$
(D) $P(A)+P(\bar{A})=1$
10. The probability a red marble selected at random from a jar containing p red, q blue and r green marbles is

JUN-23
(A) $\frac{q}{p+q+r}$
(B) $\frac{p}{p+q+r}$
(C) $\frac{p+q}{p+q+r}$
(D) $\frac{p+r}{p+q+r}$
11. A page is selected at random from a book. The probability that the digit at units place of the page number chosen is less than 7 is

SEP-21, JUL-22
(A) $\frac{3}{10}$
(B) $\frac{7}{10}$
(C) $\frac{3}{9}$
(D) $\frac{7}{9}$
12. The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is

MAY-22
(A) 2
(B) 1
(C) 3
(D) 1.5
13. Kamalam went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of kamalam winning is $\frac{1}{9}$, then the number of tickets bought by kamalam is
(A) 5
(B) 10
(C) 15
(D) 20
14. If a letter is chosen at random from the English alphabets $\{a, b, \ldots, z\}$, then the probability that the letter chosen precedes x.
(A) $\frac{12}{13}$
(B) $\frac{1}{13}$
(C) $\frac{23}{26}$
(D) $\frac{3}{26}$
15. A purse contains 10 notes of $₹ 2000,15$ notes of $₹ 500$, and 25 notes of $₹ 200$. One note is drawn at random. What is the probability that the note is either a ₹ 500 note or ₹ 200 note?
(A) $\frac{1}{5}$
(B) $\frac{3}{10}$
(C) $\frac{2}{3}$
(D) $\frac{4}{5}$

Creative MCQ

1. If the sum and mean of a data are 407 and 11 respectively, then the number of observations in the data are:

APR-23
(A) 37
(B) 4477
(C) 396
(D) 418
2. The range of first 10 prime numbers is

PTA-2
(A) 9
(B) 20
(C) 27
(D) 5
3. A letter is selected at random from the word 'PROBABILITY'. The Probability that it is not a vowel is
(A) $\frac{4}{11}$
(B) $\frac{7}{11}$
(C) $\frac{3}{11}$
(D) $\frac{6}{11}$

MDL
4. Probability of getting 3 heads or 3 tails in tossing a coin 3 times is
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$
(C) $\frac{3}{8}$
(D) $\frac{1}{3}$
5. A fair die is thrown once. The probability of getting a prime (or) composite number is PTA-6
(A) 1
(B) 0
(C) $\frac{5}{6}$
(D) $\frac{1}{6}$

