

MATHEMATICS STUDY MATERIAL

Chapter 1 -Applications of Matrices and Determinants

For More Study Materials visit www.waytosuccess.org

$12^{\text {th }}$ Maths Complete Guide includes...

Easy Solution for all Exercise Problems in Textbook Exam Based Creative Exercises
z Mark, з Mark, 5 Mark Identifications
Concept Corner for each Exercise
Exam based Creative $\mathcal{M C Q}$
Public Exam Question Paper - 2020, 6 set of PTA questions included in each section
Practice Book includes,
Chapter wise Practice Questions, Unit \& Monthly test Question papers, Quarterly, Half yearly, Govt. Model, PTA \& WTS Model Question Papers

For Free materials visit our website...

 www.waytosuccess.org-This website provides various materials to assist students and teachers of $6^{\text {th }}$ to $12^{\text {th }}$ std.
It Provides..
© Study Materials

- Question papers \& Keys
© Video \& Audio Tutorials
© Expert Teachers' Guidance 85 Doubt Clearance
- It includes assistance for Career, Life skills, cocurricufar, etc.,
> It provides all necessary academic news \& Events to students
> Students can use our materials any time at free of cost.

For VPP Orders : You can give SMS to 9787104040 to get books by VPP

Way to Success புத்தகங்கள் வேண்டுவோர் இப்புத்தகத்தின் கடைசிப் பக்கத்தில் கொடுக்கப்பட்டுள்ள அலைபேசி எண்களில் உங்கள் மாவட்ட ஒருங்கிணைப்பாளரை அழைக்கவும், அல்லகு 9787609090, 9787201010 ஆகிய எண்களைத் தொடர்புகொள்ளுங்கள்.

குறிப்பு: WAY TO SUCCESS - main புத்தகத்தின் ஒரு சில பகுதிகள் மட்டுமே இந்த குறிப்பேட்டில் தரப்பட்டள்ளது. இது ஒரு Sample மட்டுமே. முழுமைக்கையேடு வேண்டுவோ்் மேலே கொடுக்கபட்டுள்ள தகவல்களை பார்க்கவும்.

Chapter - 1

Applications of Matrices and Determinants

EXERCISE 1.1

Concept Corner

$>$ The determinant of submatrix is called minor of the element $a_{i j}$. It is denoted by $M_{i j}$.
$>$ The product of $M_{i j}$ and $(-1)^{i+j}$ is called cofactor of the element $a_{i j}$. It is denoted by $A_{i j}$. Thus the cofactor of $a_{i j}$ is $A_{i j}=(-1)^{i+j} M_{i j}$.
$>$ Let A be a square matrix of order n. Then the matrix of cofactors of A is defined as the matrix obtained by replacing each element $a_{i j}$ of A with the corresponding cofactor $A_{i j}$.
$>$ The adjoint matrix of \boldsymbol{A} is defined as the transpose of the matrix of cofactors of A. It is denoted by adj A.
$>$ Let A be a square matrix of order n. If there exists a square matrix B of order n such that $A B=B A=I_{n}$, then the matrix B is called an inverse of A.
$>$ A square matrix A is called orthogonal if $A A^{T}=A^{T} A=I$. (A is orthogonal if and only if A is non-singular and $A^{-1}=A^{T}$)

Theorems:

1. For every square matrix A of order $n, A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I_{n}$.
2. If a square matrix has an inverse, then it is unique.
3. Let A be square matrix of order n. Then, A^{-1} exists if any only if A is non - singular.
4. If A is non - singular, then
(i) $\left|A^{-1}\right|=\frac{1}{|A|}$
(ii) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(iii) $(\lambda A)^{-1}=\frac{1}{\lambda} A^{-1}$, where λ is a non - zero scalar.
5. Left Cancellation Law

Let A, B, and C be square matrices of order n. If A is non-singular and $A B=A C$, then $B=C$
6. Right Cancellation Law

Let A, B and C be square matrices of order n. If A is non- singular and $B A=C A$, then $B=C$.
7. Reversal Law for Inverses

If A and B are non- singular matrices of the same order, then the product $A B$ is also nonsingular and $(A B)^{-1}=B^{-1} A^{-1}$.
8. Law of Double Inverse, If A is non-singular, then A^{-1} is also non-singular and $\left(A^{-1}\right)^{-1}=A$.
9. If A is a non-singular square matrix of order n, then
(i) $(\operatorname{adj} A)^{-1}=\operatorname{adj}\left(A^{-1}\right)=\frac{1}{|A|} A$
(ii) $|\operatorname{adj} A|=|A|^{n-1}$
(iii) $\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$
(iv) $\operatorname{adj}(\lambda A)=\lambda^{n-1} \operatorname{adj}(A), \lambda$ is a nonzero scalar
(v) $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}$
(vi) $(\operatorname{adj} A)^{T}=\operatorname{adj}\left(A^{T}\right)$
10. If A and B are any two non-singular square matrices of order n, then
$\operatorname{adj}(A B)=(\operatorname{adjB})(\operatorname{adj} A)$.

1. Find the adjoint of the following: (i) $\left[\begin{array}{cc}-3 & 4 \\ 6 & 2\end{array}\right]$
(ii) $\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$
(iii) $\frac{1}{3}\left[\begin{array}{ccc}2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2\end{array}\right]$

$$
\text { (i) } \begin{aligned}
\text { Let } A & =\left[\begin{array}{cc}
-3 & 4 \\
6 & 2
\end{array}\right] \\
A_{11} & =\text { co-factor of }-3=2 \\
A_{12} & =\text { co-factor of } 4=-6 \\
A_{21} & =\text { co-factor of } 6=-4 \\
A_{22} & =\text { co-factor of } 2=-3 \\
\text { adj } A & =\left[\begin{array}{cc}
2 & -6 \\
-4 & -3
\end{array}\right]^{T} \\
& =\left[\begin{array}{cc}
2 & -4 \\
-6 & -3
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{l|l}
\hline 2 \mathrm{M} & \text { (ii) Let } A=\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 4 & 1 \\
3 & 7 & 2
\end{array}\right]
\end{array}
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
\left|\begin{array}{ll}
4 & 1 \\
7 & 2
\end{array}\right| & -\left|\begin{array}{ll}
3 & 1 \\
3 & 2
\end{array}\right| & \left|\begin{array}{ll}
3 & 4 \\
3 & 7
\end{array}\right| \\
-\left|\begin{array}{ll}
3 & 1 \\
7 & 2
\end{array}\right| & \left|\begin{array}{cc}
2 & 1 \\
3 & 2
\end{array}\right| & -\left|\begin{array}{ll}
2 & 3 \\
3 & 7
\end{array}\right| \\
\left|\begin{array}{ll}
3 & 1 \\
4 & 1
\end{array}\right| & -\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right| & \left|\begin{array}{ll}
2 & 3 \\
3 & 4
\end{array}\right|
\end{array}\right]^{T}
$$

Note:

$$
=\left[\begin{array}{ccc}
(8-7) & -(6-3) & (21-12) \\
-(6-7) & (4-3) & -(14-9) \\
(3-4) & -(2-3) & (8-9)
\end{array}\right]^{T}
$$

$$
=\left[\begin{array}{ccc}
1 & -3 & 9 \\
1 & 1 & -5 \\
-1 & 1 & -1
\end{array}\right]^{T}
$$

Change sign Interchange

$$
\therefore \operatorname{adj} A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-3 & 1 & 1 \\
9 & -5 & -1
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{adj} A & =\left[\begin{array}{cc}
2 & -4 \\
-6 & -3
\end{array}\right] \\
\text { (iii) Let } B & =\frac{1}{3}\left[\begin{array}{ccc}
2 & 2 & 1 \\
-2 & 1 & 2 \\
1 & -2 & 2
\end{array}\right]
\end{aligned}
$$

$$
\text { 3M adj } A=\left[\begin{array}{ccc}
6 & -6 & 3 \\
6 & 3 & -6 \\
3 & 6 & 6
\end{array}\right]
$$

$$
\text { Let us consider } A=\left[\begin{array}{ccc}
2 & 2 & 1 \\
-2 & 1 & 2 \\
1 & -2 & 2
\end{array}\right]
$$

Let us consider $A=\left[\begin{array}{ccc}2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2\end{array}\right]$

$$
\operatorname{adj} B=\operatorname{adj}\left(\frac{1}{3} A\right)
$$

$$
\begin{aligned}
\operatorname{adj} A & =\left[\begin{array}{ccc}
\left|\begin{array}{cc}
1 & 2 \\
-2 & 2
\end{array}\right| & -\left|\begin{array}{cc}
-2 & 2 \\
1 & 2
\end{array}\right| & \left|\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right| \\
-\left|\begin{array}{cc}
2 & 1 \\
-2 & 2
\end{array}\right| & \left|\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right| & -\left|\begin{array}{cc}
2 & 2 \\
1 & -2
\end{array}\right| \\
\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right| & -\left|\begin{array}{cc}
2 & 1 \\
-2 & 2
\end{array}\right| & \left|\begin{array}{cc}
2 & 2 \\
-2 & 1
\end{array}\right|
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
(2+4) & -(-4-2) & (4-1) \\
-(4+2) & (4-1) & -(-4-2) \\
(4-1) & -(4+2) & (2+4)
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
6 & 6 & 3 \\
-6 & 3 & 6 \\
3 & -6 & 6
\end{array}\right]^{T}
\end{aligned}
$$

$$
=\left(\frac{1}{3}\right)^{3-1} \operatorname{adj} A
$$

$$
=\frac{1}{3^{2}}\left[\begin{array}{ccc}
6 & -6 & 3 \\
6 & 3 & -6 \\
3 & 6 & 6
\end{array}\right]
$$

$$
=\frac{1}{9} \times 3\left[\begin{array}{ccc}
2 & -2 & 1 \\
2 & 1 & -2 \\
1 & 2 & 2
\end{array}\right]
$$

$$
\therefore \operatorname{adj} B=\frac{1}{3}\left[\begin{array}{ccc}
2 & -2 & 1 \\
2 & 1 & -2 \\
1 & 2 & 2
\end{array}\right]
$$

$\because[$ If A is a matrix of order n,

$$
\text { then } \left.\operatorname{adj}(\lambda A)=\lambda^{n-1} \operatorname{adj} A\right]
$$

2. Find the inverse (if it exists) of the following (i) $\left[\begin{array}{cc}-2 & 4 \\ 1 & -3\end{array}\right]$
(ii) $\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right]$ (iii) $\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$
(i) Let $A=\left[\begin{array}{cc}-2 & 4 \\ 1 & -3\end{array}\right]$
$|A|=6-4=2 \neq 0 . \quad \therefore A^{-1}$ exists
$\operatorname{adj} A=\left[\begin{array}{ll}-3 & -4 \\ -1 & -2\end{array}\right]$
$A^{-1}=\frac{1}{|A|}$ adj A
$\therefore A^{-1}=\frac{1}{2}\left[\begin{array}{ll}-3 & -4 \\ -1 & -2\end{array}\right]$
(ii)Let $A=\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right] \quad 3 \mathrm{M} \quad$ (iii) Let $A=\left[\begin{array}{lll}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{array}\right]$

$$
\begin{aligned}
|A| & =5[25-1]-1[5-1]+1[1-5] \\
& =5(24)-1(4)+1(-4) \\
& =120-4-4=112 \neq 0
\end{aligned}
$$

$\therefore A^{-1}$ exists.

$$
\begin{aligned}
\operatorname{adj} A & =\left[\begin{array}{ccc}
\left|\begin{array}{cc}
5 & 1 \\
1 & 5
\end{array}\right| & -\left|\begin{array}{cc}
1 & 1 \\
1 & 5
\end{array}\right| & \left|\begin{array}{ll}
1 & 5 \\
1 & 1
\end{array}\right| \\
-\left|\begin{array}{ll}
1 & 1 \\
1 & 5
\end{array}\right| & \left|\begin{array}{cc}
5 & 1 \\
1 & 5
\end{array}\right| & -\left|\begin{array}{cc}
5 & 1 \\
1 & 1
\end{array}\right| \\
\left|\begin{array}{ll}
1 & 1 \\
5 & 1
\end{array}\right| & -\left|\begin{array}{ll}
5 & 1 \\
1 & 1
\end{array}\right| & \left|\begin{array}{cc}
5 & 1 \\
1 & 5
\end{array}\right|
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
(25-1) & -(5-1) & (1-5) \\
-(5-1) & (25-1) & -(5-1) \\
(1-5) & -(5-1) & (25-1)
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
24 & -4 & -4 \\
-4 & 24 & -4 \\
-4 & -4 & 24
\end{array}\right]^{T}
\end{aligned}
$$

$$
\therefore A^{-1} \text { exists }
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
\left|\begin{array}{ll}
4 & 1 \\
7 & 2
\end{array}\right| & -\left|\begin{array}{ll}
3 & 1 \\
3 & 2
\end{array}\right| & \left|\begin{array}{ll}
3 & 4 \\
3 & 7
\end{array}\right| \\
-\left|\begin{array}{ll}
3 & 1 \\
7 & 2
\end{array}\right| & \left|\begin{array}{cc}
2 & 1 \\
3 & 2
\end{array}\right| & -\left|\begin{array}{ll}
2 & 3 \\
3 & 7
\end{array}\right| \\
\left|\begin{array}{ll}
3 & 1 \\
4 & 1
\end{array}\right| & -\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right| & \left|\begin{array}{ll}
2 & 3 \\
3 & 4
\end{array}\right|
\end{array}\right]^{T}
$$

$$
=\left[\begin{array}{ccc}
(8-7) & -(6-3) & (21-12) \\
-(6-7) & (4-3) & -(14-9) \\
(3-4) & -(2-3) & (8-9)
\end{array}\right]^{T}
$$

$\operatorname{adj} A=\left[\begin{array}{ccc}24 & -4 & -4 \\ -4 & 24 & -4 \\ -4 & -4 & 24\end{array}\right]$

$$
=\left[\begin{array}{ccc}
1 & -3 & 9 \\
1 & 1 & -5 \\
-1 & 1 & -1
\end{array}\right]^{T}
$$

$A^{-1}=\frac{1}{|A|}$ adj $A=\frac{1}{112}\left[\begin{array}{ccc}24 & -4 & -4 \\ -4 & 24 & -4 \\ -4 & -4 & 24\end{array}\right]$
$A^{-1}=\frac{1}{112} \times 4\left[\begin{array}{ccc}6 & -1 & -1 \\ -1 & 6 & -1 \\ -1 & -1 & 6\end{array}\right]$
$\therefore A^{-1}=\frac{1}{28}\left[\begin{array}{ccc}6 & -1 & -1 \\ -1 & 6 & -1 \\ -1 & -1 & 6\end{array}\right]$

$$
\begin{aligned}
|A| & =2(8-7)-3(6-3)+1(21-12) \\
& =2(1)-3(3)+1(9) \\
& =2-9+9 \\
& =2 \neq 0
\end{aligned}
$$

$$
\therefore \operatorname{adj} A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-3 & 1 & 1 \\
9 & -5 & -1
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
1 & 1 & -1 \\
-3 & 1 & 1 \\
9 & -5 & -1
\end{array}\right]
$$

3. If $F(\alpha)=\left[\begin{array}{ccc}\cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha\end{array}\right]$, show that $[F(\alpha)]^{-1}=F(-\alpha)$.

$$
\begin{align*}
& F(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right] \\
& F(-\alpha)=\left[\begin{array}{ccc}
\cos (-\alpha) & 0 & \sin (-\alpha) \\
0 & 1 & 0 \\
-\sin (-\alpha) & 0 & \cos (-\alpha)
\end{array}\right] \quad[\because \sin (-\alpha)=-\sin \alpha, \cos (-\alpha)=\cos \alpha] \\
& F(-\alpha)=\left[\begin{array}{ccc}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right]
\end{align*}
$$

To find $[F(\boldsymbol{\alpha})]^{\mathbf{1}}$:

$$
\begin{aligned}
|F(\alpha)| & =\cos \alpha[\cos \alpha-0]-0+\sin \alpha[0+\sin \alpha] \\
& =\cos ^{2} \alpha+\sin ^{2} \alpha \\
& =1 \neq 0
\end{aligned}
$$

$\therefore[F(\alpha)]^{-1}$ exists.

$$
\begin{align*}
& \operatorname{adj}[F(\alpha)]=\left[\begin{array}{cc}
\left|\begin{array}{cc}
1 & 0 \\
0 & \cos \alpha
\end{array}\right| & -\left|\begin{array}{cc}
0 & 0 \\
-\sin \alpha & \cos \alpha
\end{array}\right|
\end{array}\left|\begin{array}{cc}
0 & 1 \\
-\sin \alpha & 0
\end{array}\right|-\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
0 & \sin \alpha \\
0 & \cos \alpha
\end{array}\left|\quad \begin{array}{|cc|}
\hline \cos \alpha & 0 \\
-\sin \alpha & \cos \alpha
\end{array}\right|\right]^{T}\right. \\
& =\left[\begin{array}{ccc}
(\cos \alpha-0) & -(0-0) & (0+\sin \alpha) \\
-(0-0) & \left(\cos ^{2} \alpha+\sin ^{2} \alpha\right) & -(0-0) \\
(0-\sin \alpha) & -(0-0) & (\cos \alpha-0)
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]^{T} \\
& \operatorname{adj}[F(\alpha)]=\left[\begin{array}{ccc}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right] \\
& {[F(\alpha)]^{-1}=\frac{1}{|F(\alpha)|} \operatorname{adj}[F(\alpha)]} \\
& =\frac{1}{1}\left[\begin{array}{ccc}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right] \\
& \therefore[F(\alpha)]^{-1}=\left[\begin{array}{ccc}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right] \tag{2}
\end{align*}
$$

From (1) and (2), we get $[F(\alpha)]^{-1}=F(-\alpha)$
4. If $A=\left[\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right]$, show that $A^{2}-3 A-7 I_{2}=O_{2}$. Hence find A^{-1}.

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{cc}
5 & 3 \\
-1 & -2
\end{array}\right]\left[\begin{array}{cc}
5 & 3 \\
-1 & -2
\end{array}\right]=\left[\begin{array}{ll}
25-3 & 15-6 \\
-5+2 & -3+4
\end{array}\right] \\
& \begin{aligned}
A^{2} & =\left[\begin{array}{cc}
22 & 9 \\
-3 & 1
\end{array}\right] \\
3 A & =3\left[\begin{array}{cc}
5 & 3 \\
-1 & -2
\end{array}\right]=\left[\begin{array}{cc}
15 & 9 \\
-3 & -6
\end{array}\right] \\
7 I_{2} & =7\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
7 & 0 \\
0 & 7
\end{array}\right] \\
A^{2}-3 A-7 I_{2} & =\left[\begin{array}{cc}
22 & 9 \\
-3 & 1
\end{array}\right]-\left[\begin{array}{cc}
15 & 9 \\
-3 & -6
\end{array}\right]-\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right] \\
& =\left[\begin{array}{cc}
22-15-7 & 9-9-0 \\
-3+3-0 & 1+6-7
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
\end{aligned}
$$

$\therefore A^{2}-3 A-7 I_{2}=0$
To find $\boldsymbol{A}^{\mathbf{- 1}}$:
$A^{2}-3 A-7 I_{2}=0$
Post - multiplying by A^{-1}, we get

$$
\begin{aligned}
A-3 I-7 A^{-1} & =0 \\
7 A^{-1} & =A-3 I \\
7 A^{-1} & =\left[\begin{array}{cc}
5 & 3 \\
-1 & -2
\end{array}\right]-3\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \\
7 A^{-1} & =\left[\begin{array}{cc}
5 & 3 \\
-1 & -2
\end{array}\right]+\left[\begin{array}{cc}
-3 & 0 \\
0 & -3
\end{array}\right] \\
7 A^{-1} & =\left[\begin{array}{cc}
2 & 3 \\
-1 & -5
\end{array}\right] \\
A^{-1} & =\frac{1}{7}\left[\begin{array}{cc}
2 & 3 \\
-1 & -5
\end{array}\right]
\end{aligned}
$$

5. If $A=\frac{1}{9}\left[\begin{array}{ccc}-8 & 1 & 4 \\ 4 & 4 & 7 \\ 1 & -8 & 4\end{array}\right]$, prove that $A^{-1}=A^{T}$.

$$
\begin{gathered}
A^{-1} A^{-2}=\left(A^{-1} A\right) A=I A=A \\
A^{-1} 3 A=3\left(A^{-1} A\right)=3 I \\
A^{-1} I_{2}=A^{-1}
\end{gathered}
$$

$$
\begin{aligned}
& A=\frac{1}{9}\left[\begin{array}{ccc}
-8 & 1 & 4 \\
4 & 4 & 7 \\
1 & -8 & 4
\end{array}\right] \\
& A^{T}=\frac{1}{9}\left[\begin{array}{ccc}
-8 & 4 & 1 \\
1 & 4 & -8 \\
4 & 7 & 4
\end{array}\right] \ldots \ldots \ldots \ldots \ldots \ldots \\
&|A|=\left(\frac{1}{9}\right)^{3}[-8(16+56)-1(16-7)+4(-32-4)] \quad\left[\because|K A|=K^{n}|A|\right] \\
&=\frac{1}{729}[-8(72)-1(9)+4(-36)] \\
&=\frac{1}{729}[-576-9-144]=\frac{1}{729}(-729) \\
&|A|=-1 \neq 0 \\
& \therefore A^{-1} \text { exists. }
\end{aligned}
$$

$$
\begin{align*}
& \operatorname{adj} A=\left(\frac{1}{9}\right)^{3-1}\left[\begin{array}{cc}
\left|\begin{array}{cc}
4 & 7 \\
-8 & 4
\end{array}\right| & -\left|\begin{array}{cc}
4 & 7 \\
1 & 4
\end{array}\right| \\
-\left|\begin{array}{cc}
1 & 4 \\
-8 & 4
\end{array}\right| & \left|\begin{array}{cc}
-8 & 4 \\
1 & -8
\end{array}\right| \\
1 & -\left|\begin{array}{cc}
-8 & 1 \\
1 & -8
\end{array}\right| \\
\left|\begin{array}{cc}
1 & 4 \\
4 & 7
\end{array}\right| & -\left|\begin{array}{cc}
-8 & 4 \\
4 & 7
\end{array}\right| \\
\left|\begin{array}{cc}
-8 & 1 \\
4 & 4
\end{array}\right|
\end{array}\right]^{T} \\
& =\frac{1}{81}\left[\begin{array}{ccc}
(16+56) & -(16-7) & (-32-4) \\
-(4+32) & (-32-4) & -(64-1) \\
(7-16) & -(-56-16) & (-32-4)
\end{array}\right] \\
& =\frac{1}{81}\left[\begin{array}{ccc}
72 & -9 & -36 \\
-36 & -36 & -63 \\
-9 & 72 & -36
\end{array}\right]^{T} \\
& \operatorname{adj} A=\frac{1}{81}\left[\begin{array}{ccc}
72 & -36 & -9 \\
-9 & -36 & +72 \\
-36 & -63 & -36
\end{array}\right] \\
& =\frac{1}{81} \times 9\left[\begin{array}{ccc}
8 & -4 & -1 \\
-1 & -4 & 8 \\
-4 & -7 & -4
\end{array}\right] \\
& =\frac{1}{9} \times\left[\begin{array}{ccc}
8 & -4 & -1 \\
-1 & -4 & 8 \\
-4 & -7 & -4
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A \\
& =\frac{1}{-1} \cdot \frac{1}{9}\left[\begin{array}{ccc}
8 & -4 & -1 \\
-1 & -4 & 8 \\
-4 & -7 & -4
\end{array}\right] \\
& A^{-1}=\frac{1}{9}\left[\begin{array}{ccc}
-8 & 4 & 1 \\
1 & 4 & -8 \\
4 & 7 & 4
\end{array}\right] \tag{2}
\end{align*}
$$

From (1) and (2), we get $A^{-1}=A^{T}$
6. If $A=\left[\begin{array}{cc}8 & -4 \\ -5 & 3\end{array}\right]$, verify that $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I_{2}$.

$$
A=\left[\begin{array}{cc}
8 & -4 \\
-5 & 3
\end{array}\right]
$$

$\operatorname{adj} A=\left[\begin{array}{ll}3 & 4 \\ 5 & 8\end{array}\right]$
$A(\operatorname{adj} A)=\left[\begin{array}{cc}8 & -4 \\ -5 & 3\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 5 & 8\end{array}\right]$

$$
=\left[\begin{array}{cc}
24-20 & 32-32 \tag{1}\\
-15+15 & -20+24
\end{array}\right]
$$

$A(\operatorname{adj} A)=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right]$
$(\operatorname{adj} A) A=\left[\begin{array}{ll}3 & 4 \\ 5 & 8\end{array}\right]\left[\begin{array}{cc}8 & -4 \\ -5 & 3\end{array}\right]$

From (1), (2) and (3), we get

$$
A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I_{2}
$$

7. If $A=\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & -3 \\ 5 & 2\end{array}\right]$, verify that $(A B)^{-1}=B^{-1} A^{-1}$

$$
\begin{align*}
& A B=\left[\begin{array}{cc}
3 & 2 \\
7 & 5
\end{array}\right]\left[\begin{array}{cc}
-1 & -3 \\
5 & 2
\end{array}\right] \\
&=\left[\begin{array}{ll}
-3+10 & -9+4 \\
-7+25 & -21+10
\end{array}\right] \\
& A B=\left[\begin{array}{cc}
7 & -5 \\
+18 & -11
\end{array}\right] \\
&|A B|=-77+90=13 \neq 0 \\
&(A B)^{-1} \text { exists. } \\
& \text { adj }(A B)=\left[\begin{array}{ll}
-11 & 5 \\
-18 & 7
\end{array}\right] \\
& \begin{aligned}
&(A B)^{-1}=\frac{1}{|A B|} \text { adj }(A B) \\
&=\frac{1}{13}\left[\begin{array}{ll}
-11 & 5 \\
-18 & 7
\end{array}\right] \\
& A=\left[\begin{array}{cc}
3 & 2 \\
7 & 5
\end{array}\right] \\
&|A|=15-14=1 \neq 0 \\
& A^{-1} \text { exists } \\
& \text { adj } A=\left[\begin{array}{cc}
5 & -2 \\
-7 & 3
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \text { adj } A
\end{aligned}
\end{align*}
$$

$$
\begin{aligned}
& A^{-1}= \frac{1}{1}\left[\begin{array}{cc}
5 & -2 \\
-7 & 3
\end{array}\right] \\
& B= {\left[\begin{array}{cc}
-1 & -3 \\
5 & 2
\end{array}\right] } \\
&|B|=-2+15=13 \neq 0 \\
& \therefore B^{-1} \text { exists } \\
& \text { adj } B= {\left[\begin{array}{cc}
2 & 3 \\
-5 & -1
\end{array}\right] } \\
& B^{-1}= \frac{1}{|B|} \text { adj } B \\
& B^{-1}=\frac{1}{13}\left[\begin{array}{cc}
2 & 3 \\
-5 & -1
\end{array}\right] \\
& \begin{aligned}
B^{-1} A^{-1} & =\frac{1}{13}\left[\begin{array}{cc}
2 & 3 \\
-5 & -1
\end{array}\right]\left[\begin{array}{cc}
5 & -2 \\
-7 & 3
\end{array}\right] \\
& =\frac{1}{13}\left[\begin{array}{cc}
10-21 & -4+9 \\
-25+7 & 10-3
\end{array}\right] \\
& =\frac{1}{13}\left[\begin{array}{cc}
-11 & 5 \\
-18 & 7
\end{array}\right]
\end{aligned}
\end{aligned}
$$

From (1) and (2), we get
$(A B)^{-1}=B^{-1} A^{-1}$
8. If $\operatorname{adj}(A)=\left[\begin{array}{ccc}2 & -4 & 2 \\ -3 & 12 & -7 \\ -2 & 0 & 2\end{array}\right]$, find A.
$|\operatorname{adj} A|=2[24-0]+4[-6-4]+2[0+24]=48-80+48=16$

$$
\begin{aligned}
\operatorname{adj}(\operatorname{adj} A) & =\left[\left.\begin{array}{ccc}
\left|\begin{array}{cc}
12 & -7 \\
0 & 2
\end{array}\right| & -\left|\begin{array}{cc}
-3 & -7 \\
-2 & 2
\end{array}\right| & \left|\begin{array}{cc}
-3 & 12 \\
-2 & 0
\end{array}\right| \\
0 & 2 \\
0 & 2
\end{array} \right\rvert\,\right. \\
\left.\begin{array}{cc}
2 & 2 \\
-2 & 2
\end{array} \right\rvert\, & -\left|\begin{array}{cc}
2 & -4 \\
-2 & 0
\end{array}\right| \\
12 & -7
\end{aligned}\left|-\left|\begin{array}{cc}
2 & 2 \\
-3 & -7
\end{array}\right| \begin{array}{cc}
2 & -4 \\
-3 & 12
\end{array}\right]^{T} .
$$

9. If $\operatorname{adj}(A)=\left[\begin{array}{ccc}0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6\end{array}\right]$, find A^{-1}.

$$
\operatorname{adj}(A)=\left[\begin{array}{ccc}
0 & -2 & 0 \\
6 & 2 & -6 \\
-3 & 0 & 6
\end{array}\right]
$$

$$
|\operatorname{adj} A|=0+2[36-18]+0
$$

$$
|a d j A|=36
$$

$$
A^{-1}= \pm \frac{1}{\sqrt{|\operatorname{adj} A|}}(\operatorname{adj} A)
$$

$$
= \pm \frac{1}{\sqrt{36}}\left[\begin{array}{ccc}
0 & -2 & 0 \\
6 & 2 & -6 \\
-3 & 0 & 6
\end{array}\right]
$$

$$
= \pm \frac{1}{\sqrt{6 \times 6}}\left[\begin{array}{ccc}
0 & -2 & 0 \\
6 & 2 & -6 \\
-3 & 0 & 6
\end{array}\right]
$$

$$
A^{-1}= \pm \frac{1}{6}\left[\begin{array}{ccc}
0 & -2 & 0 \\
6 & 2 & -6 \\
-3 & 0 & 6
\end{array}\right]
$$

10. Find $\operatorname{adj}\left(\operatorname{adj}(A)\right.$ if $\operatorname{adj} A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \operatorname{adj} A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right] \\
& \operatorname{adj}(\operatorname{adj} A)=\left[\begin{array}{ccc}
\left|\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right| & -\left|\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right| & \left|\begin{array}{cc}
0 & 2 \\
-1 & 0
\end{array}\right| \\
-\left|\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right| & \left|\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right| & -\left|\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right| \\
\left|\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right| & -\left|\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right| & \left|\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right|
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
(2-0) & -(0+0) & (0+2) \\
-(0-0) & (1+1) & -(0+0) \\
(0-2) & -(0-0) & (2-0)
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
2 & 0 & 2 \\
0 & 2 & 0 \\
-2 & 0 & 2
\end{array}\right]^{T} \\
& \therefore \operatorname{adj}(\operatorname{adj} A)=\left[\begin{array}{ccc}
2 & 0 & -2 \\
0 & 2 & 0 \\
2 & 0 & 2
\end{array}\right]
\end{aligned}
$$

11. $A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$, show that $A^{T} A^{-1}=\left[\begin{array}{cc}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & \tan x \\
-\tan x & 1
\end{array}\right] \\
& A^{T}=\left[\begin{array}{cc}
1 & -\tan x \\
\tan x & 1
\end{array}\right] \\
& |A|=1+\tan ^{2} x=\sec ^{2} x \\
& \operatorname{adj} A=\left[\begin{array}{cc}
1 & -\tan x \\
\tan x & 1
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A \\
& A^{-1}=\frac{1}{\sec ^{2} x}\left[\begin{array}{cc}
1 & -\tan x \\
\tan x & 1
\end{array}\right] \\
& A^{T} A^{-1}=\left[\begin{array}{cc}
1 & -\tan x \\
\tan x & 1
\end{array}\right] \frac{1}{\sec ^{2} x}\left[\begin{array}{cc}
1 & -\tan x \\
\tan x & 1
\end{array}\right] \\
& =\frac{1}{\sec ^{2} x}\left[\begin{array}{cc}
1-\tan ^{2} x & -2 \tan x \\
2 \tan x & 1-\tan ^{2} x
\end{array}\right] \\
& =\cos ^{2} x\left[\begin{array}{cc}
1-\frac{\sin ^{2} x}{\cos ^{2} x} & -\frac{2 \sin x}{\cos x} \\
2 \frac{\sin x}{\cos x} & 1-\frac{\sin ^{2} x}{\cos ^{2} x}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\cos ^{2} x-\sin ^{2} x}{\cos ^{2} x} \cos ^{2} x & \frac{-2 \sin x \cos ^{2} x}{\cos x} \\
\frac{2 \sin x}{\cos x} \cos ^{2} x & \frac{\cos ^{2} x-\sin ^{2} x}{\cos ^{2} x} \cos ^{2} x
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} x-\sin ^{2} x & -2 \sin x \cos x \\
2 \sin x \cos x & \cos ^{2} x-\sin ^{2} x
\end{array}\right]
\end{aligned}
$$

$$
A^{T} A^{-1}=\left[\begin{array}{cc}
\cos 2 x & -\sin 2 x \\
\sin 2 x & \cos 2 x
\end{array}\right]
$$

Hence proved
12. Find the matrix A for which $A\left[\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right]=\left[\begin{array}{cc}14 & 7 \\ 7 & 7\end{array}\right]$.

Let $B=\left[\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right]$ and $C=\left[\begin{array}{cc}14 & 7 \\ 7 & 7\end{array}\right]$
Then $A B=C$
Post multiplying by B^{-1}, we get

$$
\begin{align*}
A\left(B B^{-1}\right) & =C B^{-1} \\
A I & =C B^{-1} \\
A & =C B^{-1} \tag{1}
\end{align*}
$$

$|B|=-10+3=-7 \neq 0$
$\therefore B^{-1}$ exists

$$
\operatorname{adj} B=\left[\begin{array}{cc}
-2 & -3 \\
1 & 5
\end{array}\right]
$$

$$
\begin{aligned}
B^{-1} & =\frac{1}{|B|} \operatorname{adj} B \\
& =\frac{1}{-7}\left[\begin{array}{cc}
-2 & -3 \\
1 & 5
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{cc}
2 & 3 \\
-1 & -5
\end{array}\right] \\
(1) \Rightarrow A & =\left[\begin{array}{cc}
14 & 7 \\
7 & 7
\end{array}\right] \frac{1}{7}\left[\begin{array}{cc}
2 & 3 \\
-1 & -5
\end{array}\right] \\
& =\frac{1}{7} \times 7\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
-1 & -5
\end{array}\right] \\
A & =\left[\begin{array}{cc}
4-1 & 6-5 \\
2-1 & 3-5
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & 1 \\
1 & -2
\end{array}\right]
\end{aligned}
$$

13. Given $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{cc}3 & -2 \\ 1 & 1\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$, find a matrix X such that $A X B=C$

$$
A=\left[\begin{array}{cc}
1 & -1 \\
2 & 0
\end{array}\right]
$$

$$
|A|=0+2=2 \neq 0
$$

$\therefore A^{-1}$ exists

$$
\begin{gathered}
\operatorname{adj} A=\left[\begin{array}{cc}
0 & 1 \\
-2 & 1
\end{array}\right] \\
A^{-1}=\frac{1}{|A|} \operatorname{adj} A \\
A^{-1}=\frac{1}{2}\left[\begin{array}{cc}
0 & 1 \\
-2 & 1
\end{array}\right] \\
B=\left[\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right] \\
|B|=3+2=5 \neq 0
\end{gathered}
$$

$\therefore B^{-1}$ exists

$$
\begin{aligned}
\operatorname{adj} B & =\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right] \\
B^{-1} & =\frac{1}{|B|} \operatorname{adj} B \\
B^{-1} & =\frac{1}{5}\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]
\end{aligned}
$$

Given: $A X B=C$

$$
\begin{gathered}
\text { Premultiplying by } A^{-1}, \text { we get } \\
\left(A^{-1} A\right) X B=A^{-1} C \\
(I X) B=A^{-1} C \\
X B=A^{-1} C
\end{gathered}
$$

Post - multiplying by B^{-1}, we get

$$
\begin{aligned}
& X\left(B B^{-1}\right)=A^{-1} C B^{-1} \\
& X I=A^{-1} C B^{-1} \\
& X=A^{-1}\left(C B^{-1}\right) \\
& X=\frac{1}{2}\left[\begin{array}{cc}
0 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right] \frac{1}{5}\left[\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right] \\
& X=\frac{1}{10}\left[\begin{array}{cc}
0+2 & 0+2 \\
-2+2 & -2+2
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right] \\
& X=\frac{1}{10}\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right] \\
& X=\frac{1}{10}\left[\begin{array}{ll}
2-2 & 4+6 \\
0+0 & 0+0
\end{array}\right] \\
&=\frac{1}{10}\left[\begin{array}{ll}
0 & 10 \\
0 & 0
\end{array}\right] \\
& \therefore X=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

14. If $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$, show that $A^{-1}=\frac{1}{2}\left(A^{2}-3 I\right)$.

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \\
|A| & =0-1[0-1]+1[1-0]=1+1=2 \neq 0
\end{aligned}
$$

$$
\therefore A^{-1} \text { exists }
$$

$$
\begin{aligned}
\operatorname{adj} A & =\left[\begin{array}{ccc}
\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right| & -\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right| & \left|\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right| \\
-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right| & \left|\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right| & -\left|\begin{array}{cc}
0 & 1 \\
1 & 1
\end{array}\right| \\
\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right| & -\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right| & \left|\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right|
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
(0-1) & -(0-1) & (1-0) \\
-(0-1) & (0-1) & -(0-1) \\
(1-0) & -(0-1) & (0-1)
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]^{T} \\
\operatorname{adj} A & =\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A^{-1}= & \frac{1}{|A|} \operatorname{adj} A \\
A^{-1} & =\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right] \\
A^{2} & =\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
0+1 & 1 & 0+0+1 \\
0+0+1 & 1+0+1 & 0+1+0+0 \\
0+1+0 & 1+0+0 & 1+1+0
\end{array}\right] \\
A^{2} & =\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \\
3 I & =3\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right] \\
A^{2}-3 I & =\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]+\left[\begin{array}{ccc}
-3 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
\end{aligned}
$$

$$
\frac{1}{2}\left(A^{2}-3 I\right)=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \tag{2}\\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

From (1) \& (2), we get

$$
A^{-1}=\frac{1}{2}\left(A^{2}-3 I\right)
$$

15. Decrypt the received encoded message $\left[\begin{array}{ll}2 & -3\end{array}\right]\left[\begin{array}{ll}20 & 4\end{array}\right]$ with the encryption matrix $\left[\begin{array}{cc}-1 & -1 \\ 2 & 1\end{array}\right]$ and the decryption matrix as its inverse, where the system of codes are described by the numbers 1-26 to the letters $A-Z$ respectively, and the number 0 to a blank space.

Let the encoding matrix be $A=\left[\begin{array}{cc}-1 & -1 \\ 2 & 1\end{array}\right]$

$$
\begin{aligned}
& |A|=-1+2=1 \neq 0 \quad \therefore A^{-1} \text { exists } \\
& \operatorname{adj} A=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A^{-1} & =\frac{1}{|A|} \operatorname{adj} A \\
& =\frac{1}{1}\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right] \\
A^{-1} & =\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]
\end{aligned}
$$

\therefore Decoding matrix $=A^{-1}=\left[\begin{array}{cc}1 & 1 \\ -2 & -1\end{array}\right]$
Coded row matrix decoding matrix decoded row matrix
$\left[\begin{array}{ll}20 & 4\end{array}\right]$

$$
\left[\begin{array}{cc}
1 & 1 \tag{2-3}\\
-2 & -1
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
2+6 & 2+3
\end{array}\right]=\left[\begin{array}{ll}
8 & 5
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
20-8 & 20-4
\end{array}\right]=\left[\begin{array}{ll}
12 & 16
\end{array}\right]
$$

So, the sequence of decoded row matrix $=\left[\begin{array}{ll}8 & 5\end{array}\right]\left[\begin{array}{ll}12 & 16\end{array}\right]$
The message received $=$ HELP
Thus, the message received is "HELP."

EXERCISE 1.2

Concept Corner

Elementary Transformations of a matrix:

A matrix can be transformed to another matrix by certain operations called elementary row operations and elementary column operations.

Elementary Row and Column Operations:

Elementary row operations and elementary column operations on a matrix are known a elementary transformations.
we use the following notations for elementary row transformations.
(i) Interchanging of $i^{t h}$ and $j^{\text {th }}$ rows is denoted by $R_{i} \leftrightarrow R_{j}$.
(ii) The multiplication of each element of $i^{\text {th }}$ row by a non-zero constant λ is denoted by

$$
R_{i} \rightarrow \lambda R_{i} .
$$

(iii) Addition to $i^{\text {th }}$ row, a non-zero constant λ multiple of j th row is denoted by $R_{i} \rightarrow R_{i}+\lambda R_{j}$.

Two matrices A and B of same order are said to be equivalent to one another if one can be obtained from the other by the applications of elementary transformations. Symbolically, we write $A \sim B$ to mean that the matrix A is equivalent to the matrix B.

Row-echelon form

A non-zero matrix E is said to be in a row-echelon form if.
(i) All zero rows of E occur below every non-zero row of E.
(ii) If the first non-zero element in any row i of E occurs in the $j^{\text {th }}$ column of E, then all other entries in the $j^{\text {th }}$ column of E below the first non-zero element of row i are zeros.
(iii) The first non-zero entry in the $i^{t h}$ row of E lies to the left of the first non- zero entry in $(i+1)^{\text {th }}$ row of E.
Note : A non-zero matrix is in a row-echelon form if all zero rows occur as bottom rows of the matrix, and if the first non-zero element in any lower row occurs to the right of the first non-zero entry in the higher row.
Rank of a matrix
The rank of a matrix A is defined as the order of a highest order non-vanishing minor of the matrix A. It is denoted by the symbol $\rho(A)$. The rank of a zero matrix is defined to be 0 .
Note:
(i) If a matrix contains at-least one non-zero element, then $\rho(A) \geq 1$.
(ii) The rank of the identify matrix I_{n} is n.
(iii) If the rank of a matrix A is r, then there exists at-least one minor of A of order r which does not vanish and every minor of A of order $r+1$ and higher order (if any) vanishes.
(iv) If A is an $m \times n$ matrix, then $\rho(A) \leq \min \{m, n\}=$ minimum of m, n.
(v) A square matrix A of order n is invertible if and only if $\rho(A)=n$.

An elementary matrix is defined as a matrix which is obtained form an identity matrix by applying only one elementary transformation.

Theorem

Every non-singular matrix can be transformed to an identity matrix, by a sequence of elementary row operations.

Gauss-Jordan method

Transforming a non-singular matrix A to the form I_{n} by applying elementary row operations, is called Gauss-Jordan method. The steps in finding A^{-1} by Gauss-Jordan method are given below.

Step 1

Augment the identity matrix I_{n} on the right-side of A to get the matrix $\left[A \mid I_{n}\right]$.

Step 2

Obtain elementary matrices (row operations) $E_{1}, E_{2}, \ldots E_{k}$ such that $\left(E_{k} . . E_{2} E_{1}\right) A=I_{n}$.
Apply $E_{1}, E_{2} \ldots E_{k}$ on $\left[A \mid I_{n}\right]$. Then $\left[\left(E_{k} . . E_{2} E_{1}\right) A \mid\left(E_{k} . . E_{2} E_{1}\right) I_{n}\right]$. that is, $\left[I_{n} \mid A^{-1}\right]$.

1. Find the rank of the following matrices by minor method. (i) $\left[\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right] \quad$ (ii) $\left[\begin{array}{cc}-1 & 3 \\ 4 & -7 \\ 3 & -4\end{array}\right]$
(iii) $\left[\begin{array}{llll}\mathbf{1} & -2 & -1 & 0 \\ 3 & -6 & -3 & 1\end{array}\right]$
(iv) $\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 4 & -6 \\ 5 & 1 & -1\end{array}\right]$
(v) $\left[\begin{array}{llll}0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 3 \\ 8 & 1 & 0 & 2\end{array}\right]$
(i) Let $A=\left[\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right]$
Order of the matrix A is 2×2
2 M (iv) Let $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 4 & -6 \\ 5 & 1 & -1\end{array}\right]$

$$
\begin{aligned}
& \therefore \rho(A) \leq \min \{2,2\}=2 \\
& \quad|A|=4-4=0 \\
& \therefore \rho(A) \neq 2
\end{aligned}
$$

Thus $\rho(A)=1$
(ii) Let $A=\left[\begin{array}{cc}-1 & 3 \\ 4 & -7 \\ 3 & -4\end{array}\right]$

Order of the matrix A is 3×3

$$
\therefore \rho(A) \leq \min \{3,3\}=3
$$

There is only one third order minor of A

$$
\begin{aligned}
&|A|=1(-4+6)+2(-2+30)+3(2-20) \\
&=1(2)+2(28)+3(-18) \\
&=2+56-54 \\
&=4 \neq 0 \\
& \therefore \rho(A)=3
\end{aligned}
$$

(v) Let $A=\left[\begin{array}{llll}0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 3 \\ 8 & 1 & 0 & 2\end{array}\right]$

Order of the matrix A is 3×4

$$
\therefore \rho(A) \leq \min \{3,4\}=3
$$

We find that the third order minor

$$
\begin{aligned}
\left|\begin{array}{lll}
0 & 1 & 1 \\
0 & 2 & 3 \\
8 & 1 & 2
\end{array}\right| & =0-0+8(3-2) \\
& =8(1)=8 \neq 0 \\
\therefore \rho(A) & =3
\end{aligned}
$$

2. Find the rank of the following matrices by row reduction method:

(i) $\left[\begin{array}{cccc}1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11\end{array}\right] \quad$ (ii) $\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & -1 & 2 \\ 1 & -2 & 3 \\ 1 & -1 & 1\end{array}\right]$	1 (iii) $\left[\begin{array}{cccc}3 & -8 & 5 & 2 \\ 2 & -5 & 1 & 4 \\ -1 & 2 & 3 & -2\end{array}\right]$
(i) $\text { Let } \begin{aligned} & A=\left[\begin{array}{cccc} 1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11 \end{array}\right] \\ & \sim\left[\begin{array}{cccc} 1 & 1 & 1 & 3 \\ 0 & -3 & 1 & -2 \\ 0 & -6 & 2 & -4 \end{array}\right] \begin{array}{l} 3 \mathrm{M} \\ R_{2} \rightarrow R_{2}-2 R_{1} \\ R_{3} \rightarrow R_{3}-5 R_{1} \\ \end{array} \\ & \sim\left[\begin{array}{cccc} 1 & 1 & 1 & 3 \\ 0 & -3 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{array}\right] R_{3} \rightarrow R_{3}-2 R_{2} \end{aligned}$ The last equivalent matrix is in rowechelon form. It has two non-zero rows. $\therefore \rho(A)=2$ (iii) $\text { Let } \begin{aligned} & A=\left[\begin{array}{cccc} 3 & -8 & 5 & 2 \\ 2 & -5 & 1 & 4 \\ -1 & 2 & 3 & -2 \end{array}\right] \quad 3 \mathrm{M} \\ & \sim\left[\begin{array}{cccc} 3 & -8 & 5 & 2 \\ 0 & 1 & -7 & 8 \\ 0 & -2 & 14 & -4 \end{array}\right] \begin{array}{l} R_{2} \rightarrow 3 R_{2}-2 R_{1} \\ R_{3} \rightarrow 3 R_{3}-R_{1} \\ \end{array} \\ & \sim\left[\begin{array}{cccc} 3 & -8 & 5 & 2 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 0 & 12 \end{array}\right] R_{3} \rightarrow R_{3}-2 R_{2} \end{aligned}$ The last equivalent matrix is in row echelon form. It has three non-zero rows. $\therefore \rho(A)=3$	(ii) Let $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & -1 & 2 \\ 1 & -2 & 3 \\ 1 & -1 & 1\end{array}\right]$ $\begin{aligned} & \sim\left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & -7 & 5 \\ 0 & -4 & 4 \\ 0 & -3 & 2 \end{array}\right] \begin{array}{c} R_{2} \rightarrow R_{2}-3 R_{1} \\ R_{3} \rightarrow R_{3}-R_{1} \\ R_{4} \rightarrow R_{4}-R_{1} \end{array} \\ & \sim\left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & -7 & 5 \\ 0 & 0 & 8 \\ 0 & 0 & -4 \end{array}\right] \begin{array}{l} R_{3} \rightarrow 7 R_{3}-4 R_{2} \\ R_{4} \rightarrow 4 R_{4}-3 R_{3} \end{array} \\ & \sim\left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & -7 & 5 \\ 0 & 0 & 8 \\ 0 & 0 & 0 \end{array}\right]_{R_{4} \rightarrow 2 R_{4}+R_{3}} \end{aligned}$ The last equivalent matrix is in rowechelon form. It has three non-zero row. $\therefore \rho(A)=3$

3. Find the inverse of each of the following by Gauss-Jordan method:
(i) $\left[\begin{array}{ll}2 & -1 \\ 5 & -2\end{array}\right]$
(ii) $\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3\end{array}\right]$
(iii) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$
(i) Let $A=\left[\begin{array}{ll}2 & -1 \\ 5 & -2\end{array}\right]$, Applying Gauss - Jordan method, we get
$[A \mid I]=\left[\begin{array}{ll|ll}2 & -1 & 1 & 0 \\ 5 & -2 & 0 & 1\end{array}\right]$
$\rightarrow\left[\begin{array}{ll|ll}1 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 5 & -2 & 0 & 1\end{array}\right] R_{1} \rightarrow \frac{1}{2} R_{1}$
$\rightarrow\left[\begin{array}{cc|cc}1 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & -\frac{5}{2} & 1\end{array}\right] R_{2} \rightarrow R_{2}-5 R_{1}$
$\rightarrow\left[\begin{array}{ll|ll}1 & 0 & -2 & 1 \\ 0 & \frac{1}{2} & -\frac{5}{2} & 1\end{array}\right] R_{1} \rightarrow R_{1}+R_{2} \rightarrow\left[\begin{array}{ll|ll}1 & 0 & -2 & 1 \\ 0 & 1 & -5 & 2\end{array}\right]_{R_{2}} \rightarrow 2 R_{2}$
$\therefore A^{-1}=\left[\begin{array}{ll}-2 & 1 \\ -5 & 2\end{array}\right]$
(ii) Let $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3\end{array}\right]$ applying Gauss - Jordan method, we get
$[A \mid I]=\left[\begin{array}{ccc|ccc}1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ 6 & -2 & -3 & 0 & 0 & 1\end{array}\right]$
$\rightarrow\left[\begin{array}{ccc|ccc}1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 4 & -3 & -6 & 0 & 1\end{array}\right] \xrightarrow[\substack{R_{2} \rightarrow R_{2}-R_{1} \\ R_{2} \rightarrow R_{1}}]{\substack{R_{2} \\ 1}}$
$\rightarrow\left[\begin{array}{ccc|ccc}1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -2 & -4 & 1\end{array}\right]_{R_{3} \rightarrow R_{3}-4 R_{2}}$
$\rightarrow\left[\begin{array}{ccc|ccc}1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -3 & -3 & 1 \\ 0 & 0 & 1 & -2 & -4 & 1\end{array}\right] R_{2} \rightarrow R_{2}+R_{3}$
$\rightarrow\left[\begin{array}{lll|lll}1 & 0 & 0 & -2 & -3 & 1 \\ 0 & 1 & 0 & -3 & -3 & 1 \\ 0 & 0 & 1 & -2 & -4 & 1\end{array}\right] R_{1} \rightarrow R_{1}+R_{2}$
$\therefore A^{-1}=\left[\begin{array}{lll}-2 & -3 & 1 \\ -3 & -3 & 1 \\ -2 & -4 & 1\end{array}\right]$
(iii) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$ applying Gauss - Jordan method, we get

$$
[A \mid I]=\left[\begin{array}{lll|lll}
1 & 2 & 3 & 1 & 0 & 0 \\
2 & 5 & 3 & 0 & 1 & 0 \\
1 & 0 & 8 & 0 & 0 & 1
\end{array}\right]
$$

$$
\rightarrow\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & -2 & 5 & -1 & 0 & 1
\end{array}\right] \begin{gathered}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{gathered}
$$

$$
\rightarrow\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & -1 & -5 & 2 & 1
\end{array}\right]_{R_{3} \rightarrow R_{3}+2 R_{2}}
$$

$$
\rightarrow\left[\begin{array}{ccc|ccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & -3 & -2 & 1 & 0 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right]_{R_{3} \rightarrow(-1) R_{3}}
$$

$$
\rightarrow\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & -14 & 6 & 3 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right] \begin{aligned}
& R_{1} \rightarrow R_{1}-3 R_{3} \\
& R_{2} \rightarrow R_{2}+3 R_{3}
\end{aligned}
$$

$$
\rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -40 & 16 & 9 \\
0 & 1 & 0 & 13 & -5 & -3 \\
0 & 0 & 1 & 5 & -2 & -1
\end{array}\right] R_{1} \rightarrow R_{1}-2 R_{2}
$$

$\therefore A^{-1}=\left[\begin{array}{ccc}-40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1\end{array}\right]$

EXERCISE 1.3

Concept Corner

A system of linear equations having at least one solution is said to be consistent. A system of linear equations having no solution is said to be inconsistent.
> Matrix Inversion Method
This method can be applied only when the coefficient matrix is a square matrix and nonsingular.
Consider the matrix equation $A X=B$,
Where A is a square matrix and non-singular. Since A is non-singular, A^{-1} exists and $A^{-1} A=A A^{-1}=I$.
Pre-multiplying both sides of (1) by A^{-1}, we get

$$
A^{-1}(A X)=A^{-1} B
$$

That is, $\left(A^{-1} A\right) X=A^{-1} B$.
Hence, we get $X=A^{-1} B$.

1. Solve the following system of linear equations by matrix inversion method.
(i) $2 x+5 y=-2, x+2 y=-3$
(ii) $2 x-y=8,3 x+2 y=-2$
(iii) $2 x+3 y-y=9, x+y+z=9,3 x-y-z=-1$
(iv) $\boldsymbol{x}+\boldsymbol{y}+\mathrm{z}-\mathbf{2}=\mathbf{0}, \mathbf{6 x}-\mathbf{4 y}+\mathbf{5 z}-\mathbf{3 1}=\mathbf{0}, 5 \boldsymbol{x}+\mathbf{2 y}+\mathbf{2 z}=\mathbf{1 3}$
(i) $2 x+5 y=-2, x+2 y=-3$

3M
The matrix form of the system is $A X=B$, where

$$
A=\left[\begin{array}{ll}
2 & 5 \\
1 & 2
\end{array}\right], X=\left[\begin{array}{l}
x \\
y
\end{array}\right], B=\left[\begin{array}{l}
-2 \\
-3
\end{array}\right]
$$

$$
|A|=4-5=-1 \neq 0
$$

$\therefore A^{-1}$ exists
$\operatorname{adj} A=\left[\begin{array}{cc}2 & -5 \\ -1 & 2\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A$

$$
A^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
2 & -5 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
-2 & 5 \\
1 & -2
\end{array}\right]
$$

$$
A X=B
$$

$$
\Rightarrow X=A^{-1} B
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
-2 & 5 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
-2 \\
-3
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4-15 \\
-2+6
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-11 \\
4
\end{array}\right]
$$

The solution is $(x=-11, y=4)$
(ii) $2 x-y=8,3 x+2 y=-2$

The matrix form of the system is

$$
A X=B \text { where }
$$

$$
A=\left[\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right], X=\left[\begin{array}{l}
x \\
y
\end{array}\right], B=\left[\begin{array}{c}
8 \\
-2
\end{array}\right]
$$

$$
|A|=4+3=7 \neq 0
$$

$\therefore A^{-1}$ exists

$$
\operatorname{adj} A=\left[\begin{array}{cc}
2 & 1 \\
-3 & 2
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{7}\left[\begin{array}{cc}
2 & 1 \\
-3 & 2
\end{array}\right]
$$

$$
A X=B \Rightarrow X=A^{-1} B
$$

$$
=\frac{1}{7}\left[\begin{array}{cc}
2 & 1 \\
-3 & 2
\end{array}\right]\left[\begin{array}{c}
8 \\
-2
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{7}\left[\begin{array}{c}
16-2 \\
-24-4
\end{array}\right]=\frac{1}{7}\left[\begin{array}{c}
14 \\
-28
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 \\
-4
\end{array}\right]
$$

The solution is $(x=2, y=-4)$
(iii) $2 x+3 y-z=9, x+y+z=9,3 x-y-z=-1$

The matrix form of the system is $A X=B$ where $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & 1 & 1 \\ 3 & -1 & -1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{c}9 \\ 9 \\ -1\end{array}\right]$ $|A|=2[-1+1]-3[-1-3]-1[-1-3]=16 \neq 0$.
$\therefore A^{-1}$ exists

$$
\begin{aligned}
& \operatorname{adj} A= \\
& {\left[\begin{array}{ccc}
\left|\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right| & -\left|\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right| & \left|\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right| \\
-\left|\begin{array}{cc}
3 & -1 \\
-1 & -1
\end{array}\right| & \left|\begin{array}{cc}
2 & -1 \\
3 & -1
\end{array}\right| & -\left|\begin{array}{cc}
2 & 3 \\
3 & -1
\end{array}\right| \\
\left|\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right| & -\left|\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right| & \left|\begin{array}{cc}
2 & 3 \\
1 & 1
\end{array}\right|
\end{array}\right]^{T}} \\
& =\left[\begin{array}{ccc}
(-1+1) & -(-1-3) & (-1-3) \\
-(-3-1) & (-2+3) & -(-2-9) \\
(3+1) & -(2+1) & (2-3)
\end{array}\right]^{T} \\
& \quad=\left[\begin{array}{ccc}
0 & 4 & -4 \\
4 & 1 & 11 \\
4 & -3 & -1
\end{array}\right]^{T} \\
& \operatorname{adj} A=\left[\begin{array}{ccc}
0 & 4 & 4 \\
4 & 1 & -3 \\
-4 & 11 & -1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A^{-1} & =\frac{1}{|A|} \operatorname{adjA} \\
& =\frac{1}{16}\left[\begin{array}{ccc}
0 & 4 & 4 \\
4 & 1 & -3 \\
-4 & 11 & -1
\end{array}\right] \\
A X & =B \Rightarrow X=A^{-1} B \\
\Rightarrow\left[\begin{array}{l}
x \\
y \\
Z
\end{array}\right] & =\frac{1}{16}\left[\begin{array}{ccc}
0 & 4 & 4 \\
4 & 1 & -3 \\
-4 & 11 & -1
\end{array}\right]\left[\begin{array}{c}
9 \\
9 \\
-1
\end{array}\right] \\
& =\frac{1}{16}\left[\begin{array}{c}
0+36-4 \\
36+9+3 \\
-36+99+1
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y \\
Z
\end{array}\right] } & =\frac{1}{16}\left[\begin{array}{l}
32 \\
48 \\
64
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
\end{aligned}
$$

\therefore The solution is $(x=2, y=3, z=4)$
(iv) $x+y+z=2,6 x-4 y+5 z-31=0,5 x+2 y+2 z=13$

The matrix form of the system is $A X=B$, where $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 6 & -4 & 5 \\ 5 & 2 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{c}2 \\ 31 \\ 13\end{array}\right]$

$$
|A|=1(-8-10)-1(12-25)+1(12+20)=27 \neq 0
$$

$\therefore A^{-1}$ exists.

$$
\begin{aligned}
& \text { adj } A=\left[\begin{array}{ccc}
(-8-10) & -(12-25) & (12+20) \\
-(2-2) & (2-5) & -(2-5) \\
(5+4) & -(5-6) & (-4-6)
\end{array}\right]^{T} \\
&=\left[\begin{array}{ccc}
-18 & 13 & 32 \\
0 & -3 & 3 \\
9 & 1 & -10
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-18 & 0 & 9 \\
13 & -3 & 1 \\
32 & 3 & -10
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \text { adj } A=\frac{1}{27}\left[\begin{array}{ccc}
-18 & 0 & 9 \\
13 & -3 & 1 \\
32 & 3 & -10
\end{array}\right] \\
& A X=B \Rightarrow X=A^{-1} B=\frac{1}{27}\left[\begin{array}{ccc}
-18 & 0 & 9 \\
13 & -3 & 1 \\
32 & 3 & -10
\end{array}\right]\left[\begin{array}{c}
2 \\
31 \\
13
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{27}\left[\begin{array}{c}
-36+0+117 \\
26-93+13 \\
64+93-130
\end{array}\right]=\frac{1}{27}\left[\begin{array}{c}
81 \\
-54 \\
27
\end{array}\right] } \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right] \therefore \text { The solution is }(x=3, y=-2, z=1) }
\end{aligned}
$$

2. If $A=\left[\begin{array}{ccc}-5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]$, find the products $A B$ and $B A$ and hence solve the system of equations $x+y+2 z=1,3 x+2 y+z=7,2 x+y+3 z=2$.

$$
\begin{aligned}
& A B=\left[\begin{array}{ccc}
-5 & 1 & 3 \\
7 & 1 & -5 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-5+3+6 & -5+2+3 & -10+1+9 \\
7+3-10 & 7+2-5 & 14+1-15 \\
1-3+2 & 1-2+1 & 2-1+3
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& =4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \therefore A B=4 I_{3} \\
& B A=\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{ccc}
-5 & 1 & 3 \\
7 & 1 & -5 \\
1 & -1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-5+7+2 & 1+1-2 & 3-5+2 \\
-15+14+1 & 3+2-1 & 9-10+1 \\
-10+7+3 & 2+1-3 & 6-5+3
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& =4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \therefore B A=4 I_{3}
\end{aligned}
$$

So, we get $A B=B A=4 I_{3}$

$$
\left[\because A B=B A=I \Rightarrow B^{-1}=A(\text { or }) A^{-1}=B\right]
$$

$$
\Rightarrow\left(\frac{1}{4} A\right) B=B\left(\frac{1}{4} A\right)=I_{3}
$$

Hence $B^{-1}=\frac{1}{4} A$
Matrix form of the given system of equations:

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
1 \\
7 \\
2
\end{array}\right] \\
\Rightarrow B\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] & =\left[\begin{array}{l}
1 \\
7 \\
2
\end{array}\right] \\
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] & =B^{-1}\left[\begin{array}{l}
1 \\
7 \\
2
\end{array}\right] \\
& =\frac{1}{4} A\left[\begin{array}{l}
1 \\
7 \\
2
\end{array}\right] \\
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] & =\frac{1}{4}\left[\begin{array}{ccc}
-5 & 1 & 3 \\
7 & 1 & -5 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
7 \\
2
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\frac{1}{4}\left[\begin{array}{c}
-5+7+6 \\
7+7-10 \\
1-7+2
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{c}
8 \\
4 \\
-4
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

\therefore The solution is $(x=2, y=1, z=-1)$
3. A man is appointed in a job with a monthly salary of certain amount and a fixed amount of annual increment. If his salary was ₹ 19,800 per month at the end of the first month after 3 years of service and ₹ 23,400 per month at the end of the first month after 9 years of service, find his starting salary and his annual increment. (Use matrix inversion method to solve the problem.)

Let the monthly salary $=₹ x$

$$
\text { Annual increment }=₹ y
$$

From the given information, we have

$$
\begin{aligned}
& x+3 y=19800 \\
& x+9 y=23400
\end{aligned}
$$

The matrix form is $A X=B$
where $A=\left[\begin{array}{ll}1 & 3 \\ 1 & 9\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{l}19800 \\ 23400\end{array}\right]$

$$
\begin{gathered}
|A|=9-3=6 \neq 0 \\
\therefore A^{-1} \text { exists } \\
\operatorname{adj} A=\left[\begin{array}{cc}
9 & -3 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
A^{-1} & =\frac{1}{|A|} \operatorname{adj} A \\
& =\frac{1}{6}\left[\begin{array}{cc}
9 & -3 \\
-1 & 1
\end{array}\right] \\
A X & =B \Rightarrow X=A^{-1} B \\
& =\frac{1}{6}\left[\begin{array}{cc}
9 & -3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
19800 \\
23400
\end{array}\right] \\
X & =\frac{1}{6}\left[\begin{array}{cc}
178200 & -70200 \\
-19800 & +23400
\end{array}\right] \\
X & =\frac{1}{6}\left[\begin{array}{c}
108000 \\
3600
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{c}
18000 \\
600
\end{array}\right]
\end{aligned}
$$

The solution is $x=18000, y=600$
\therefore Monthly salary $=₹ 18,000$ \& Annual increment $=₹ 600$
4. 4 men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method.

$$
\begin{aligned}
& X=\frac{1}{12}\left[\begin{array}{cc}
5 & -4 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
\frac{1}{3} \\
\frac{1}{4}
\end{array}\right] \\
& X=\frac{1}{12}\left[\begin{array}{cc}
\frac{5}{3} & -1 \\
-\frac{2}{3} & +1
\end{array}\right]=\frac{1}{12}\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right] \\
& {\left[\begin{array}{l}
\frac{1}{x} \\
\frac{1}{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{12} \times \frac{2}{3} \\
\frac{1}{12} \times \frac{1}{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{18} \\
\frac{1}{36}
\end{array}\right]} \\
& \frac{1}{x}=\frac{1}{18} \Rightarrow x=18 \\
& \frac{1}{y}=\frac{1}{36} \Rightarrow y=36
\end{aligned}
$$

\therefore Number of days taken by a man to complete the work $=18$ days

Number of days taken by a woman to

$$
\text { complete the work }=36 \text { days }
$$ complete the work $=36$ days

Let
The number of days taken by
a man to complete the work a man to complete the work The number of days taken by a woman to complete the work $\int=y$ From the given information, we have

$$
\begin{aligned}
& \frac{4}{x}+\frac{4}{y}=\frac{1}{3} \\
& \frac{2}{x}+\frac{5}{y}=\frac{1}{4}
\end{aligned}
$$

The matrix form is $A X=B$ where

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
4 & 4 \\
2 & 5
\end{array}\right], X=\left[\begin{array}{l}
\frac{1}{x} \\
\frac{1}{y}
\end{array}\right], B=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{4}
\end{array}\right] \\
& |A|=20-8=12 \neq 0 \therefore A^{-1} \text { exists } \\
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A \\
& \\
& \quad=\frac{1}{12}\left[\begin{array}{cc}
5 & -4 \\
-2 & 4
\end{array}\right] \\
& A X=B \Rightarrow X=A^{-1} B
\end{aligned}
$$

\qquad

The matrix form is $A X=B$ where
5. The prices of three commodities A, B and C are ₹ x, y and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchases 2 units of C and sells 3 units of A and one unit of B. Person R purchases one unit of A and sells 3 units of B and one unit of C. In the process, P, Q and R earn ₹ 15,000 , ₹ 1,000 and ₹ 4,000 respectively. Find the prices per unit of A, B and C. (Use matrix inversion method to solve the problem.)

Let the price per unit of
Commodity $A=₹ x, \quad$ Commodity $B=₹ y$, Commodity $C=₹ z$
From the given information, we get

$$
\begin{aligned}
2 x-4 y+5 z & =15000 \\
3 x+y-2 z & =1000 \\
-x+3 y+z & =4000
\end{aligned}
$$

Note: 1. The amount separate on purchasing the commodity is negative
2. The amount earned by selling the commodity is positive.

The matrix from is $A X=B$ where

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
2 & -4 & 5 \\
3 & 1 & -2 \\
-1 & 3 & 1
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], B=\left[\begin{array}{c}
15000 \\
1000 \\
4000
\end{array}\right] \\
|A| & =2(1+6)+4(3-2)+5(9+1)=68 \neq 0
\end{aligned}
$$

$\therefore A^{-1}$ exists

$$
\begin{aligned}
& \operatorname{adj} A=\left[\begin{array}{ccc}
(1+6) & -(3-2) & (9+1) \\
-(-4-15) & (2+5) & -(6-4) \\
(8-5) & -(-4-15) & (2+12)
\end{array}\right]^{T} \\
& \operatorname{adj} A=\left[\begin{array}{ccc}
7 & -1 & 10 \\
19 & 7 & -2 \\
3 & 19 & 14
\end{array}\right]^{T}=\left[\begin{array}{ccc}
7 & 19 & 3 \\
-1 & 7 & 19 \\
10 & -2 & 14
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{68}\left[\begin{array}{ccc}
7 & 19 & 3 \\
-1 & 7 & 19 \\
10 & -2 & 14
\end{array}\right] \\
& A X=B \Rightarrow X=A^{-1} B
\end{aligned}
$$

$$
X=\frac{1}{68}\left[\begin{array}{ccc}
7 & 19 & 3 \\
-1 & 7 & 19 \\
10 & -2 & 14
\end{array}\right]\left[\begin{array}{c}
15000 \\
1000 \\
4000
\end{array}\right]
$$

$$
X=\frac{1}{68}\left[\begin{array}{c}
105000+19000+12000 \\
-15000+7000+76000 \\
150000-2000+56000
\end{array}\right]
$$

$$
X=\frac{1}{68}\left[\begin{array}{c}
136000 \\
68000 \\
204000
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2000 \\
1000 \\
3000
\end{array}\right]
$$

\therefore The solution is $x=2000, y=1000, z=3000$
Price per unit of $A=₹ 2000 \& \quad$ Price per unit of $B=₹ 1000 \&$ Price per unit of $C=₹ 3000$

EXERCISE 1.4

Concept Corner

The Cramer's rule: $x_{1}=\frac{\Delta_{1}}{\Delta}, x_{2}=\frac{\Delta_{2}}{\Delta}, \quad x_{3}=\frac{\Delta_{3}}{\Delta}$
Where $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|, \quad \Delta_{1}=\left|\begin{array}{lll}b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33}\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{lll}a_{11} & b_{1} & a_{13} \\ a_{21} & b_{2} & a_{23} \\ a_{31} & b_{3} & a_{33}\end{array}\right|, \quad \Delta_{3}=\left|\begin{array}{lll}a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ a_{31} & a_{32} & b_{3}\end{array}\right|$

1. Solve the following systems of linear equations by Cramer's rule:
(i) $5 x-2 y+16=0, x+3 y-7=0$
(ii) $\frac{3}{x}+2 y=12, \frac{2}{x}+3 y=13$
(iii) $3 x+3 y-z=11,2 x-y+2 z=9,4 x+3 y+2 z=25$
(iv) $\frac{3}{x}-\frac{4}{y}-\frac{2}{z}-1=0, \frac{1}{x}+\frac{2}{y}+\frac{1}{z}-2=0, \frac{2}{x}-\frac{5}{y}-\frac{4}{z}+1=0$
(i) $5 x-2 y=-16, x+3 y=7$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right|=15+2=17 \\
\Delta_{1} & =\left|\begin{array}{cc}
-16 & -2 \\
7 & 3
\end{array}\right|=-48+14=-34 \\
\Delta_{2} & =\left|\begin{array}{cc}
5 & -16 \\
1 & 7
\end{array}\right|=35+16=51
\end{aligned}
$$

3 M (ii) $\frac{3}{x}+2 y=12, \frac{2}{x}+3 y=13$
3M

By Cramer's rule, we get

$$
\begin{aligned}
& x=\frac{\Delta_{1}}{\Delta}=-\frac{34}{17}=-2 \\
& y=\frac{\Delta_{2}}{\Delta}=\frac{51}{17}=3
\end{aligned}
$$

\therefore The solution is $(x=-2, y=3)$.

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right|=9-4=5 \\
& \Delta_{1}=\left|\begin{array}{ll}
12 & 2 \\
13 & 3
\end{array}\right|=36-26=10 \\
& \Delta_{2}=\left|\begin{array}{ll}
3 & 12 \\
2 & 13
\end{array}\right|=39-24=15 \\
& \quad \frac{1}{x}=\frac{\Delta_{1}}{\Delta}=\frac{10}{5}=2 \Rightarrow x=\frac{1}{2} \\
& \quad y=\frac{\Delta_{2}}{\Delta}=\frac{15}{5}=3
\end{aligned}
$$

\therefore The solution is $\left(x=\frac{1}{2}, y=3\right)$
(iii) $3 x+3 y-z=11,2 x-y+2 z=9,4 x+3 y+2 z=25$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
3 & 3 & -1 \\
2 & -1 & 2 \\
4 & 3 & 2
\end{array}\right| \\
&=3[-2-6]-3[4-8]-1[6+4] \\
&=-24+12-10=-22 \\
& \Delta_{1}=\left|\begin{array}{ccc}
11 & 3 & -1 \\
9 & -1 & 2 \\
25 & 3 & 2
\end{array}\right| \\
&=11(-2-6)-3(18-50)- \\
& 1(27+25) \\
&=11(-8)-3(-32)-1(52) \\
&=-88+96-52=-44
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{2}=\left|\begin{array}{ccc}
3 & 11 & -1 \\
2 & 9 & 2 \\
4 & 25 & 2
\end{array}\right| \\
&=3(18-50)-11(4-8)- \\
&=3(-32)-11(-4)-1(14) \\
&=-96+44-14=-66 \\
& \Delta_{3}=\left|\begin{array}{ccc}
3 & 3 & 11 \\
2 & -1 & 9 \\
4 & 3 & 25
\end{array}\right| \\
&=3(-25-27)-3(50-36)+11(6+4) \\
&=3(-52)-3(14)+11(10) \\
&=-156-42+110=-88
\end{aligned}
$$

By Cramer's Rule, we get

$$
x=\frac{\Delta_{1}}{\Delta}=\frac{-44}{-22}=2 ; \quad y=\frac{\Delta_{2}}{\Delta}=\frac{-66}{-22}=3 ; z=\frac{\Delta_{3}}{\Delta}=\frac{-88}{-22}=4
$$

\therefore The solution is $(x=2, y=3, z=4)$

$$
\begin{aligned}
& \text { (iv) } \frac{3}{x}-\frac{4}{y}-\frac{2}{z}=1 \\
& \frac{1}{x}+\frac{2}{y}+\frac{1}{z}=2 \\
& \frac{2}{x}-\frac{5}{y}-\frac{4}{z}=-1 \\
& \Delta=\left|\begin{array}{ccc}
3 & -4 & -2 \\
1 & 2 & 1 \\
2 & -5 & -4
\end{array}\right| \\
& =3(-8+5)+4(-4-2)-2(-5-4) \\
& =3(-3)+4(-6)-2(-9) \\
& =-9-24+18=-15 \\
& \Delta_{1}=\left|\begin{array}{ccc}
1 & -4 & -2 \\
2 & 2 & 1 \\
-1 & -5 & -4
\end{array}\right| \\
& =1(-8+5)+4(-8+1)-2(-10+2) \\
& =1(-3)+4(-7)-2(-8) \\
& =-3-28+16=-15
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{2} & =\left|\begin{array}{ccc}
3 & 1 & -2 \\
1 & 2 & 1 \\
2 & -1 & -4
\end{array}\right| \\
& =3(-8+1)-1(-4-2)-2(-1-4) \\
& =3(-7)-1(-6)-2(-5) \\
& =-21+6+10=-5 \\
\Delta_{2} & =-5 \\
\Delta_{3} & =\left|\begin{array}{ccc}
3 & -4 & 1 \\
1 & 2 & 2 \\
2 & -5 & -1
\end{array}\right| \\
& =3(-2+10)+4(-1-4)+1(-5- \\
& =3(8)+4(-5)+1(-9) \\
& =24-20-9=-5 \\
\Delta_{3} & =-5
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{x}=\frac{\Delta_{1}}{\Delta}=\frac{-15}{-15}=1 \Rightarrow x=1 \\
& \frac{1}{y}=\frac{\Delta_{2}}{\Delta}=-\frac{5}{-15}=\frac{1}{3} \Rightarrow y=3 \\
& \frac{1}{z}=\frac{\Delta_{3}}{\Delta}=-\frac{5}{-15}=\frac{1}{3} \Rightarrow z=3
\end{aligned}
$$

\therefore The solution is $(x=1, y=3, z=3)$
2. In a competitive examination, one mark is awarded for every correct answer while $\frac{1}{4}$ mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly? (Use Cramer's rule to solve the problem).
Let the number of question Answered correctly $=x$
The number of question Answered wrongly $=y$

$$
\begin{equation*}
\therefore x+y=100 \tag{1}
\end{equation*}
$$

Marks awarded for one

$$
\text { Correct answer }=1
$$

Wrong answer $=-\frac{1}{4}$
$\therefore(1 \times x)+\left(-\frac{1}{4} \times y\right)=80$
$\Delta=\left|\begin{array}{cc}1 & 1 \\ 4 & -1\end{array}\right|=-1-4=-5$
$\Delta_{1}=\left|\begin{array}{cc}100 & 1 \\ 320 & -1\end{array}\right|=-100-320=-420 \quad \Delta_{1}=-420$
$\Delta_{2}=\left|\begin{array}{ll}1 & 100 \\ 4 & 320\end{array}\right|=320-400=-80 \quad \Delta_{2}=-80$
$x=\frac{\Delta_{1}}{\Delta}=\frac{-420}{-5}=84 \quad \& \quad y=\frac{\Delta_{2}}{\Delta}=\frac{-80}{-5}=16 \therefore$ The student answered 84 questions correctly.
3. A chemist has one solution which is 50% acid and another which is 25% acid. How much each should be mixed to make 10 litres of a 40% acid solution? (Use Cramer's rule to solve the problem).

3M
Let x and y be the amount of solution containing 50% and 25% acid respectively.

From the given data,

$$
\begin{equation*}
x+y=10 \tag{1}
\end{equation*}
$$

50% of $x+25 \%$ of $y=40 \%$ of 10

$$
\begin{gathered}
\frac{50}{100} x+\frac{25}{100} y=\frac{40}{100}(10) \\
50 x+25 y=400 \\
\Delta=\left|\begin{array}{cc}
1 & 1 \\
50 & 25
\end{array}\right|=25-50=-\ldots . .(2) \\
\Delta_{x}=\left|\begin{array}{cc}
10 & 1 \\
400 & 25
\end{array}\right|=250-400=-150
\end{gathered}
$$

$$
\begin{aligned}
\Delta_{y} & =\left|\begin{array}{cc}
1 & 100 \\
50 & 400
\end{array}\right| \\
& =400-500=-100 \\
x & =\frac{\Delta_{x}}{\Delta}=\frac{-150}{-25}=6 \\
y & =\frac{\Delta_{y}}{\Delta}=\frac{-100}{-5}=4
\end{aligned}
$$

6 litres of solution containing 50% acid and 4 litres of solution containing 25% acid must be mixed to make 40% acid solution
4. A fish tank can be filled in 10 minutes using both pumps A and B simultaneously. However, pump B can pump water in or out at the same rate. If pump B is inadvertently run in reverse, then the tank will be filled in 30 minutes. How long would it take each pump to fill the tank by itself? (use Cramer's rule to solve the problem).

Let
The time taken by pump A to fill the tank by itself $=x$ minutes
The time taken by pump B to fill the tank by itself $=y$ minutes
So, the part of the tank filled by pump A in 1 minute $=\frac{1}{x}$
The part of the tank filled by pump B in 1 minute $=\frac{1}{y}$
The part of the tank filled by both pumps A \& B in 1 minute $=\frac{1}{10}$

$$
\therefore \frac{1}{x}+\frac{1}{y}=\frac{1}{10}
$$

If pump B runs in reverse, then the tank will be filled by both pumps in 30 minutes.
In this case, the part of the tank filled by both pumps A \& B in 1 minute $=\frac{1}{30}$
$\therefore \frac{1}{x}-\frac{1}{y}=\frac{1}{30}$
Let $a=\frac{1}{x}$ and $b=\frac{1}{y}$
$a+b=\frac{1}{10} \Rightarrow 10 a+10 b=1$
$a-b=\frac{1}{30} \Rightarrow 30 a-30 b=1$
$\Delta=\left|\begin{array}{cc}10 & 10 \\ 30 & -30\end{array}\right|=-300-300=-600$
$\Delta_{1}=\left|\begin{array}{cc}1 & 10 \\ 1 & -30\end{array}\right|=-30-10=-40$

$$
\begin{aligned}
& \Delta_{2}=\left|\begin{array}{ll}
10 & 1 \\
30 & 1
\end{array}\right|=10-30=-20 \\
& a=\frac{\Delta_{1}}{\Delta}=\frac{-40}{-600}=\frac{1}{15} \\
& b=\frac{\Delta_{2}}{\Delta}=\frac{-20}{-600}=+\frac{1}{30} \\
& a=\frac{1}{x}=\frac{1}{15} \Rightarrow x=15 \\
& b=\frac{1}{y}=\frac{1}{30} \Rightarrow y=30
\end{aligned}
$$

Pump A will take 15 minutes to fill the tank by itself.
Pump B will take 30 minutes to fill the tank by itself.
5. A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is ₹150. The cost of the two dosai, two idlies and four vadais is ₹200. The cost of five dosai, four idlies and two vadais is ₹ 250 . The family has ₹ 350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had?

Let The cost of one dosai $=₹ x$
The cost of one idly $=₹ y$
The cost of one vadai $=₹ z$
According to the given information, we get
$2 x+3 y+2 z=150$
$2 x+2 y+4 z=200$
$5 x+4 y+2 z=250$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{lll}
2 & 3 & 2 \\
2 & 2 & 4 \\
5 & 4 & 2
\end{array}\right| \\
&=2(4-16)-3(4-20)+2(8-10) \\
&=2(-12)-3(-16)+2(-2) \\
&=-24+48-4=20 \\
& \Delta=20 \\
& \Delta_{1}=\left|\begin{array}{lll}
150 & 3 & 2 \\
200 & 2 & 4 \\
250 & 4 & 2
\end{array}\right| \\
&=150(4-16)-3(400-1000) \\
&=150(-12)-3(-600)+2(300) \\
&=-1800+1800+600=600 \\
& \therefore \Delta_{1}=600 \quad+2(800-500)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{2}=\left|\begin{array}{lll}
2 & 150 & 2 \\
2 & 200 & 4 \\
5 & 250 & 2
\end{array}\right| \\
&=2(400-1000)-150(4-20) \\
&+2(500-1000) \\
&=2(-600)-150(-16)+2(-500) \\
&=-1200+2400-1000=200 \\
& \therefore \Delta_{2}=200 \\
& \Delta_{3}=\left|\begin{array}{lll}
2 & 3 & 150 \\
2 & 2 & 200 \\
5 & 4 & 250
\end{array}\right| \\
&=2(500-800)-3(500-1000) \\
&=2(-300)-3(-500)+150(-2) \\
&=-600+1500-300=600 \\
& \Delta_{3}=600
\end{aligned}
$$

By Cramer's Rule, we get
$x=\frac{\Delta_{1}}{\Delta}=\frac{600}{20}=30$
$y=\frac{\Delta_{2}}{\Delta}=\frac{200}{20}=10$
$z=\frac{\Delta_{3}}{\Delta}=\frac{600}{20}=30$
\therefore The cost of one dosai $=₹ 30$
The cost of one idly $=₹ 10$
The cost of one vadai $=₹ 30$
The cost of 3 dosai and six idly and six vadai $=3(30)+6(10)+6(30)$

$$
=90+60+180=₹ 330
$$

Since the family has ₹ 350 in hand, they will be able to manage to pay the bill.

EXERCISE 1.5

1. Solve the following systems of linear equations by Gaussian elimination method.

$$
\begin{aligned}
& \text { (i) } 2 x-2 y+3 z=2, x+2 y-z=3 \\
& 3 x-y+2 z=1
\end{aligned}
$$

The augmented matrix is

$$
\begin{aligned}
& {[A \mid B] }=\left[\begin{array}{ccc|c}
2 & -2 & 3 & 2 \\
1 & 2 & -1 & 3 \\
3 & -1 & 2 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
2 & -2 & 3 & 2 \\
3 & -1 & 2 & 1
\end{array}\right] R_{1} \leftrightarrow R_{2} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
0 & -6 & 5 & -4 \\
0 & -7 & 5 & -8
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1} \\
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & -1 & 3 \\
0 & -6 & 5 & -4 \\
0 & 0 & -5 & -20
\end{array}\right] R_{3} \rightarrow 6 R_{3}-7 R_{2}
\end{aligned}
$$

Writing the equivalent system of equation from the row-echelon matrix, we get

$$
\begin{align*}
x+2 y-z & =3 \ldots \tag{1}\\
-6 y+5 z & =-4 . . . \tag{2}\\
-5 z & =-20 \tag{3}
\end{align*}
$$

\qquad

$$
(3) \Rightarrow z=\frac{20}{5}=4 \Rightarrow z=4
$$

Substituting $z=4$ in (2), we get

$$
\begin{aligned}
-6 y+5(4) & =-4 \\
-6 y & =-4-20=-24 \\
y & =\frac{-24}{-6}=4 \\
y & =4
\end{aligned}
$$

Substituting $y=4$ and $z=4$ in (1), we get

$$
\begin{aligned}
& x+2(4)-4=3 \\
& x+4=3 \\
& x=3-4=-1 \\
& x=-1
\end{aligned}
$$

\therefore The solution is $(x=-1, y=4, z=4)$
(ii) $2 x+4 y+6 z=22$,
$3 x+8 y+5 z=27,-x+y+2 z=2$
The augmented matrix is

$$
\begin{aligned}
{[A \mid B] } & =\left[\begin{array}{ccc|c}
2 & 4 & 6 & 22 \\
3 & 8 & 5 & 27 \\
-1 & 1 & 2 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 11 \\
3 & 8 & 5 & 27 \\
-1 & 1 & 2 & 2
\end{array}\right] R_{1} \rightarrow \frac{1}{2} R_{1} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 11 \\
0 & 2 & -4 & -6 \\
0 & 3 & 5 & 13
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}+R_{1} \\
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 11 \\
0 & 1 & -2 & -3 \\
0 & 3 & 5 & 13
\end{array}\right] R_{2} \rightarrow \frac{1}{2} R_{2} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 11 \\
0 & 1 & -2 & -3 \\
0 & 0 & 11 & 22
\end{array}\right]_{R_{3}} \rightarrow R_{3}-3 R_{2}
\end{aligned}
$$

Writing the equivalent system of equations from the row - echelon matrix, we get

$$
\begin{align*}
& x+2 y+3 z=11 . \\
& y-2 z=-3 \ldots \ldots \ldots \tag{2}\\
& 11 z=22 \ldots \ldots \ldots \tag{3}\\
& (3) \Rightarrow z=\frac{22}{11}=2 \\
& z=2
\end{align*}
$$

Substituting $z=2$ in (2), we get
$y-2(2)=-3$
$y-4=-3$
$y=-3+4=1$
$y=1$
Substituting $y=1 \& z=2$ in (1), we get

$$
\begin{aligned}
& x+2(1)+3(2)=11 \\
& x+2+6=11 \Rightarrow x=11-8=3 \\
& x=3
\end{aligned}
$$

\therefore The solution is $(x=3, y=1, z=2)$
2. If $a x^{2}+b x+c$ is divided by $x+3, x-5$, and $x-1$, the remainders are 21,61 and 9 respectively. Find $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}. (Use Gaussian elimination method.)

PTA-3 5M Let $P(x)=a x^{2}+b x+c$
Given: $P(x) \div(x+3)$ and leaves the remainder 21
$\therefore P(-3)=a(-3)^{2}+b(-3)+c=21$

$$
9 a-3 b+c=21
$$

Given: $P(x) \div(x-5)$ and leaves the remainder 61
$\therefore P(5)=a(5)^{2}+b(5)+c=61$

$$
25 a+5 b+c=61
$$

Given: $P(x) \div(x-1)$ and leave the remainder 9
$\therefore P(+1)=a(+1)^{2}+b(+1)+c=9$
$a+b+c=9$
\therefore The system of linear equations:
$9 a-3 b+c=21$
$25 a+5 b+c=61$

$$
a+b+c=9
$$

The augmented matrix is $[A \mid B]=\left[\begin{array}{ccc|c}9 & -3 & 1 & 21 \\ 25 & 5 & 1 & 61 \\ 1 & 1 & 1 & 9\end{array}\right]$

$$
\begin{aligned}
& \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 9 \\
25 & 5 & 1 & 61 \\
9 & -3 & 1 & 21
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 9 \\
0 & -20 & -24 & -164 \\
0 & -12 & -8 & -60
\end{array}\right] \begin{array}{l}
R_{3} \\
R_{2} \rightarrow R_{2}-25 R_{1} \\
R_{3} \rightarrow R_{3}-9 R_{1}
\end{array}
\end{aligned}
$$

$$
\rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 9 \\
0 & -5 & -6 & -41 \\
0 & -3 & -2 & -15
\end{array}\right] \begin{aligned}
& R_{2} \rightarrow \frac{R_{2}}{4} \\
& R_{3} \rightarrow \frac{R_{3}}{4}
\end{aligned}
$$

$$
\rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 9 \\
0 & -5 & -6 & -41 \\
0 & 0 & 8 & 48
\end{array}\right]_{R_{3} \rightarrow 5 R_{3}-3 R_{2}}
$$

Writing the equivalent equation from the row - echelon matrix, we get
$a+b+c=9$
$-5 b-6 c=-41$
$8 c=48$
(3) $\Rightarrow c=\frac{48}{8}=6$

$$
c=6
$$

Substituting $c=6$ in (2), we get
$-5 b-6(6)=-41$
$-5 b-36=-41$
$-5 b=-41+36=-5$

$$
b=\frac{-5}{-5}=1
$$

$$
b=1
$$

Substituting $b=1, c=6$ in (1), we get

$$
a+1+6=9
$$

$$
\begin{aligned}
& a=9-7=2 \\
& a=2
\end{aligned}
$$

\therefore The solution is $(a=2, b=1, c=6)$
3. An amount of ₹ 65,000 is invested in three bonds at the rates of $6 \%, 8 \%$ and 9% per annum respectively. The total annual income is ₹ 4800 . The income from the third bond is ₹ 600 more than that from the second bond. Determine the price of each bond. (Use Gaussian elimination method.)
Let the price of $6 \%, 8 \%, 9 \%$ bond be ₹ x, ₹ y, ₹ z respectively.
From the given data

$$
\begin{align*}
x+y+z & =65000 \tag{1}\\
(6 \% x)+(8 \% y)+(9 \% z) & =4800 \\
6 x+8 y+9 z & =480000 \tag{2}\\
9 \% z & =600+8 \% y \\
-8 y+9 z & =60000 \tag{3}
\end{align*}
$$

From (1), (2) and (3)
The augmented matrix is

$$
\begin{align*}
& {[A \mid B]=\left[\begin{array}{ccc|c}
1 & 1 & 1 & 65000 \\
6 & 8 & 9 & 480000 \\
0 & -8 & 9 & 60000
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 65000 \\
0 & 2 & 3 & 90000 \\
0 & -8 & 9 & 60000
\end{array}\right] R_{2} \rightarrow R_{2}-6 R_{1} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 65000 \\
0 & 2 & 3 & 90000 \\
0 & 0 & 21 & 42000
\end{array}\right] R_{3} \rightarrow R_{3}+4 R_{2} \\
& x+y+z=65000 \tag{4}\\
& 2 y+3 z=90000 \\
& 21 z=42000 \\
& z=\frac{42000}{21}=20,000 \\
& (5) \Rightarrow 2 y+3(20000)=90000 \\
& 2 y=90000-60000 \\
& 2 y=30000 \\
& y=15000 \\
& \text { (4) } \Rightarrow x+15000+20000=65000 \\
& x=65000-35000 \\
& x=30,000 \\
& \therefore \text { The price of } 6 \% \text { bond }=₹ 30,000 \\
& \text { The price of } 8 \% \text { bond }=₹ 15,000 \\
& \text { The price of } 9 \% \text { bond }=₹ 20,000
\end{align*}
$$

4. A boy is walking along the path $y=a x^{2}+b x+c$ through the points $(-6,8),(-2,-12)$, and $(3,8)$. He wants to meet his friend at $P(7,60)$. Will he meet his friend? (Use Gaussian elimination method.)
The path $y=a x^{2}+b x+c$ passes through the points $(-6,8),(-2,-12)$ and $(3,8)$
So, we get the system of equations

$$
\begin{aligned}
8 & =a(-6)^{2}+b(-6)+c \Rightarrow 36 a-6 b+c=8 \\
-12 & =a(-2)^{2}+b(-2)+c \Rightarrow 4 a-2 b+c=-12 \\
8 & =a(3)^{2}+b(3)+c \Rightarrow 9 a+3 b+c=8
\end{aligned}
$$

The augmented matrix is

$$
\begin{aligned}
{[A \mid B] } & =\left[\begin{array}{ccc|c}
36 & -6 & 1 & 8 \\
4 & -2 & 1 & -12 \\
9 & 3 & 1 & 8
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
36 & -6 & 1 & 8 \\
0 & -12 & 8 & -116 \\
0 & 18 & 3 & 24
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow 9 R_{2}-R_{1} \\
R_{3} \rightarrow 4 R_{3}-R_{1}
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|c}
36 & -6 & 1 & 8 \\
0 & -3 & 2 & -29 \\
0 & 6 & 1 & 8
\end{array}\right] R_{2} \rightarrow \frac{1}{4} R_{2} \\
& \rightarrow\left[\begin{array}{ccc|c}
36 & -6 & 1 & 8 \\
0 & -3 & 2 & -29 \\
0 & 0 & 5 & -50
\end{array}\right] R_{3} \rightarrow R_{3}+2 R_{2}
\end{aligned}
$$

Writing the equivalent equations from the row-echelon matrix, we get

$$
\begin{align*}
36 a-6 b+c & =8 \tag{1}\\
-3 b+2 c & =-29 \tag{2}\\
5 c & =-50 \tag{3}
\end{align*}
$$

(3) $\Rightarrow c=-\frac{50}{5}=-10$
(2) $\Rightarrow-3 b+2(-10)=-29$
$-3 b=-29+20=-9$

$$
b=\frac{-9}{-3}=3 \quad \Rightarrow b=3
$$

(1) $\Rightarrow 36 a-6(3)-10=8$

$$
36 a-28=8
$$

$$
36 a=8+28=36
$$

$$
a=\frac{36}{36}=1
$$

\therefore Equation of the path is $y=x^{2}+3 x-10$
Substituting $x=7$, we get
$y=7^{2}+3(7)-10$
$=49+21-10=60$
Thus, the path passes through the point $P(7,60)$.
Hence, the boy will meet his friend.

EXERCISE 1.6

Concept Corner

Rouche'-Capelli Theorem:
A system of linear equations, written in the form as $A X=B$, is consistent if any only if the rank of the coefficient matrix is equal to the rank of the augmented matrix; that is, $\rho(A)=\rho([A \mid B])$.

1. Test for consistency and if possible, solve the following systems of equations by rank method.

$$
\text { (i) } x-y+2 z=2,2 x+y+4 z=7,4 x-y+z=4
$$

The matrix form of the system is $A X=B$, where
$A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 1 & 4 \\ 4 & -1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{l}2 \\ 7 \\ 4\end{array}\right]$
The augmented matrix is

$$
\begin{aligned}
{[A \mid B] } & =\left[\begin{array}{ccc|c}
1 & -1 & 2 & 2 \\
2 & 1 & 4 & 7 \\
4 & -1 & 1 & 4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & 2 & 2 \\
0 & 3 & 0 & 3 \\
0 & 3 & -7 & -4
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-4 R_{1} \\
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & 2 & 2 \\
0 & 3 & 0 & 3 \\
0 & 0 & -7 & -7
\end{array}\right] R_{3} \rightarrow R_{3}-R_{2}
\end{aligned}
$$

The last equivalent matrix is in row-echelon form and has three non-zero rows.

$$
\begin{aligned}
& \therefore \rho[A \mid B]=3 \\
& \text { Also } A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 3 & 0 \\
0 & 0 & -7
\end{array}\right]
\end{aligned}
$$

It is also in the echelon form and it has also three non-zero rows. $\quad \therefore \rho(A)=3$
Since $\rho(A)=\rho[A \mid B]=3=$ no.of unknowns, the given system is consistent and has a unique solution.
The equivalent system of equations:

$$
\begin{align*}
x-y+2 z & =2 \tag{1}\\
3 y & =3 \tag{2}\\
-7 z & =-7 \tag{3}
\end{align*}
$$

(3) $\Rightarrow-7 z=-7$

$$
\begin{aligned}
& z=\frac{-7}{-7}=1 \\
& z=1
\end{aligned}
$$

(2) $\Rightarrow 3 y=3$

$$
\begin{aligned}
& y=\frac{3}{3}=1 \\
& y=1
\end{aligned}
$$

Substituting, $y=1, z=1$ in (1), we get
$x-1+2=2$
$x+1=2 \Rightarrow x=2-1=1$
$\Rightarrow x=1$
\therefore The solution is $(x=1, y=1, z=1)$
(ii) $3 x+y+z=2, x-3 y+2 z=1,7 x-y+4 z=5$

The matrix form of the system is $A X=B$, where

$$
A=\left[\begin{array}{ccc}
3 & 1 & 1 \\
1 & -3 & 2 \\
7 & -1 & 4
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], B=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
& {[A, B] }=\left[\begin{array}{ccc|c}
3 & 1 & 1 & 2 \\
1 & -3 & 2 & 1 \\
7 & -1 & 4 & 5
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c|c|}
1 & -3 & 2 & 1 \\
3 & 1 & 1 & 2 \\
7 & -1 & 4 & R_{1}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -3 & 2 & 1 \\
0 & 10 & -5 & -1 \\
0 & 20 & -10 & -2
\end{array}\right] \begin{array}{l}
R_{2} \\
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3}
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -3 & 2 & 1 \\
0 & 10 & -5 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] R_{1} \\
& R_{3} \rightarrow R_{3}-2 R_{1}
\end{aligned}
$$

The last equivalent matrix is in row-echelon form and has two non-zero rows.

$$
\begin{aligned}
\therefore \rho[A \mid B] & =2 \\
\text { Also } A & =\left[\begin{array}{ccc}
1 & -3 & 2 \\
0 & 10 & -5 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

It has two non-zero rows
$\therefore \rho(A)=2$
Since $\rho(A)=\rho[A \mid B]=2<$ Number of unknowns, the given system is consistent and has infinitely many solutions.

The equivalent system of equations:

$$
\begin{align*}
x-3 y+2 z & =1 \tag{1}\\
10 y-5 z & =-1 \tag{2}
\end{align*}
$$

Let $z=t, t \in R$
(2) $\Rightarrow 10 y-5 t=-1$

$$
\Rightarrow 10 y=5 t-1 \Rightarrow y=\frac{5 t-1}{10}
$$

(1) $\Rightarrow x-\frac{3}{10}(5 t-1)+2 t=1$

$$
x+\frac{-15 t+3+20 t}{10}=1
$$

$$
x+\frac{5 t+3}{10}=1
$$

$$
x=\frac{10-5 t-3}{10}=\frac{7-5 t}{10}
$$

\therefore The solution is $\left(x=\frac{1}{10}(7-5 t), y=\frac{1}{10}(5 t-1), z=t\right), t \in R$
(iii) $2 x+2 y+z=5, x-y+z=1,3 x+y+2 z=4$

The matrix form of the system is $A X=B$, where

$$
A=\left[\begin{array}{ccc}
2 & 2 & 1 \\
1 & -1 & 1 \\
3 & 1 & 2
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], B=\left[\begin{array}{l}
5 \\
1 \\
4
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
& {[A, B] }=\left[\begin{array}{ccc|c}
2 & 2 & 1 & 5 \\
1 & -1 & 1 & 1 \\
3 & 1 & 2 & 4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c|c|c|}
1 & -1 & 1 & 1 \\
2 & 2 & 1 & 5 \\
3 & 1 & 2 & R_{1}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 4 & -1 & 3 \\
0 & 4 & -1 & 1
\end{array} R_{2} \rightarrow R_{2}-2 R_{1}\right. \\
& R_{3} \rightarrow R_{3}-3 R_{1} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 4 & -1 & 3 \\
0 & 0 & 0 & -2
\end{array}\right] R_{3} \rightarrow R_{3}-R_{1}
\end{aligned}
$$

The last equivalent matrix is in row-echelon form and it has three non-zero rows. $\therefore \rho[A \mid B]=3$

$$
\text { Also } A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 4 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

It is in row - echelon form and it has two non-zero rows $\therefore \rho(A)=2$
Since $\rho(A) \neq \rho[A \mid B]$ the given system is inconsistent and has no solutions.
(iv) $2 x-y+z=2,6 x-3 y+3 z=6,4 x-2 y+2 z=4$

PTA-5

The matrix form of the system is $A X=B$, where

$$
A=\left[\begin{array}{lll}
2 & -1 & 1 \\
6 & -3 & 3 \\
4 & -2 & 2
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], B=\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
{[A \mid B] } & =\left[\begin{array}{lll|l}
2 & -1 & 1 & 2 \\
6 & -3 & 3 & 6 \\
4 & -2 & 2 & 4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
2 & -1 & 1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1}
\end{array}
\end{aligned}
$$

The last equivalent matrix is in row-echelon form and has one non-zero rows.

$$
\begin{aligned}
\therefore \rho[A \mid B] & =1 \\
\text { Also } A & =\left[\begin{array}{lcc}
2 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

A is in row - echelon form and it has one non-zero row.

$$
\therefore \rho(A)=1
$$

Since $\rho(A)=\rho[A \mid B]=1<$ No.of unknowns, the given system is consistent and it has infinitely many solutions.
The equivalent system of equations:

$$
2 x-y+z=2
$$

Let $y=s$ and $z=t$ where $s, t \in R$

$$
\begin{aligned}
2 x-s+t & =2 \\
2 x & =2+s-t \\
x & =\frac{1}{2}(2+s-t)
\end{aligned}
$$

\therefore The solution is $x=\frac{1}{2}(2+s-t)$,

$$
y=s, z=t, s, t \in R
$$

2. Find the value of k for which the equations $k x-2 y+z=1, x-2 k y+z=-2$,
$x-2 y+k z=1$ have
(i) no solution
(ii) unique solution
(iii) infinitely many solution
$k x-2 y+z=1, x-2 k y+z=-2, x-2 y+k z=1$
The matrix form of the system is $A X=B$, where

$$
A=\left[\begin{array}{ccc}
k & -2 & 1 \\
1 & -2 k & 1 \\
1 & -2 & k
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], B=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
{[A \mid B] } & =\left[\begin{array}{ccc|c}
k & -2 & 1 & 1 \\
1 & -2 k & 1 & -2 \\
1 & -2 & k & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -2 & k & 1 \\
1 & -2 k & 1 & -2 \\
k & -2 & 1 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -2 & k & 1 \\
0 & 2-2 k & 1-k & -3 \\
0 & 2 k-2 & 1-k^{2} & 1-k
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-k R_{1} \\
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -2 & k & 1 \\
0 & 2-2 k & 1-k & -3 \\
0 & 0 & 2-k-k^{2} & -2-k
\end{array}\right] R_{3} \rightarrow R_{3}+R_{2} \\
& \rightarrow\left[\begin{array}{cccc}
1 & -2 & k & 1 \\
0 & 2(1-k) & 1-k & -3 \\
0 & 0 & (2+k)(1-k) & -(2+k)
\end{array}\right]
\end{aligned}
$$

Case (i) If $k=1$
then $\rho[A \mid B]=3$ and $\rho(A)=1$
Since $\rho(A) \neq \rho[A \mid B]$, the given system of equations is inconsistent and has no solution.
Case (ii) If $k \neq-d 2, k \neq 1$,
then $\rho[A \mid B]=3$ and $\rho[A]=3$
Since $\rho[A]=\rho[A \mid B]=3=$ number of unknowns, the given system is consistent and has a unique solution
Case (iii) If $k=-2$,
then $\rho[A \mid B]=2$ and $\rho[A]=2$
Since $\rho[A \mid B]=\rho(A)=2<$ number of unknowns, the given system of equations is consistent and has infinitely many solution.
The given system has
(i) no solution when $k=1$
(ii) unique solution when $k \neq 1, k \neq-2$
(iii) infinitely many solution when $k=-2$
3. Investigate the values of λ and μ the system of linear equations $2 x+3 y+5 z=9$, $7 x+3 y-5 z=8,2 x+3 y+\lambda z=\mu$, have (i) no solution (ii) a unique solution
(iii) an infinite number of solutions.
$2 x+3 y+5 z=9,7 x+3 y-5 z=8,2 x+3 y+\lambda z=\mu$
The matrix form of the system is $A X=B$, where

$$
A=\left[\begin{array}{ccc}
2 & 3 & 5 \\
7 & 3 & -5 \\
2 & 3 & \lambda
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], B=\left[\begin{array}{l}
9 \\
8 \\
\mu
\end{array}\right]
$$

The augmented matrix is

$$
[A \mid B]=\left[\begin{array}{ccc|c}
2 & 3 & 5 & 9 \\
7 & 3 & -5 & 8 \\
2 & 3 & \lambda & \mu
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
2 & 3 & 5 & 9 \\
0 & -15 & -45 & -47 \\
0 & 0 & \lambda-5 & \mu-9
\end{array}\right] \begin{gathered}
\\
R_{2} \rightarrow 2 R_{2}-7 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{gathered}
$$

Case (i)
If $\lambda=5$ and $\mu \neq 9$, then $\rho(A)=2$ and $\rho[A \mid B]=3$
Since $\rho(A) \neq \rho[A \mid B]$, the given system of equations is inconsistent and has no solution.
Case (ii)
If $\lambda \neq 5$ and $\mu \in R$, then
Since $\rho(A)=\rho[A \mid B]=3=$ no. of. unknowns, the given system of equations is consistent and has a unique solution.

Case (iii)

If $\lambda=5$ and $\mu=9$ then $\rho(A)=2$ and $\rho[A \mid B]=2<$ No. of unknowns the given system of equations is consistent and has infinitely many solutions.
The given system has
(i) no solution when $\lambda=5$ and $\mu \neq 9$
(ii) unique solution when $\lambda \neq 5$ and $\mu \in R$
(iii) infinitely many solution when $\lambda=5$ and $\mu=9$.

EXERCISE 1.7

Concept Corner

The homogeneous system of linear equation $A X=0$ where $A=\left[a_{i j}\right]_{n \times n}$ and $X=\left[x_{i j}\right]_{n \times 1}$ and $O=[o]_{n \times 1}$
(i) has the trivial solution if $|A| \neq 0$
(ii) has a non trivial solution if $|A|=0$

1. Solve the following system of homogenous equations.
(i) $3 x+2 y+7 z=0,4 x-3 y-2 z=0,5 x+9 y+23 z=0$

The matrix form of the system is $A X=0$, where

$$
A=\left[\begin{array}{ccc}
3 & 2 & 7 \\
4 & -3 & -2 \\
5 & 9 & 23
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], O=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
{[A \mid O] } & =\left[\begin{array}{ccc|c}
3 & 2 & 7 & 0 \\
4 & -3 & -2 & 0 \\
5 & 9 & 23 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
3 & 2 & 7 & 0 \\
0 & -17 & -34 & 0 \\
0 & 17 & 34 & 0
\end{array}\right] \begin{array}{l}
R_{3} \rightarrow 3 R_{2}-4 R_{1} \\
R_{3} \rightarrow 3 R_{3}-5 R_{1}
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|c}
3 & 2 & 7 & 0 \\
0 & -17 & -34 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] R_{R_{3}} \rightarrow R_{3}+R_{1} \\
& \rightarrow\left[\begin{array}{lll|l}
3 & 2 & 7 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] R_{2} \rightarrow-\frac{1}{17} R_{2}
\end{aligned}
$$

$\therefore \rho(A)=\rho([A \mid O])=2$ <number of unknowns.
\therefore The system is consistent and has infinite number of (non-trivial) solution.
The equivalent system of equation

$$
\begin{array}{r}
3 x+2 y+7 z=0 \\
y+2 z=0 \tag{2}
\end{array}
$$

Let $z=t, t \in R$
(2) $\Rightarrow y+2 t=0 \Rightarrow y=-2 t$
(1) $\Rightarrow 3 x+2(-2 t)+7(t)=0$
$3 x-4 t+7 t=0$

$$
3 x+3 t=0
$$

$$
x+t=0
$$

$$
x=-t
$$

\therefore The solution is $(x=-t, y=-2 t, z=t)$ where $t \in R$
(ii) $2 x+3 y-z=0, x-y-2 z=0,3 x+y+3 z=0$

The matrix form of the system is $A X=O$, where

$$
A=\left[\begin{array}{ccc}
2 & 3 & -1 \\
1 & -1 & -2 \\
3 & 1 & 3
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], O=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
& {[A \mid O] }=\left[\begin{array}{ccc|c}
2 & 3 & -1 & 0 \\
1 & -1 & -2 & 0 \\
3 & 1 & 3 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & -2 & 0 \\
2 & 3 & -1 & 0 \\
3 & 1 & 3 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & -2 & 0 \\
0 & 5 & 3 & 0 \\
0 & 4 & 9 & 0
\end{array}\right] R_{2} \\
& R_{2} \rightarrow R_{2}-2 R_{1} \\
& R_{3} \rightarrow R_{3}-3 R_{1} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & -1 & -2 & 0 \\
0 & 5 & 3 & 0 \\
0 & 0 & 33 & 0
\end{array}\right] R_{3} \rightarrow 5 R_{3}-4 R_{2}
\end{aligned}
$$

$$
\rho(A)=\rho([A \mid O])=3=\text { number of unknowns. }
$$

\therefore The given system is consistent and has a trivial solution.
\therefore The trivial solution is $(x=0, y=0, z=0)$
2. Determine the values of λ for which the following system of equations $x+y+3 z=0$, $4 x+3 y+\lambda z=0,2 x+y+2 z=0$ has (i) a unique solution (ii) a non-trivial solution.
$x+y+3 z=0,4 x+3 y+\lambda z=0,2 x+y+2 z=0$
PTA-4 5M
The matrix form of the system is $A X=0$, where

$$
A=\left[\begin{array}{lll}
1 & 1 & 3 \\
4 & 3 & \lambda \\
2 & 1 & 2
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], O=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
{[A \mid O] } & =\left[\begin{array}{lll|l}
1 & 1 & 3 & 0 \\
4 & 3 & \lambda & 0 \\
2 & 1 & 2 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 3 \\
0 & -1 & \lambda-12 & 0 \\
0 \\
0 & -1 & -4 & 0
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-4 R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1}
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 3 \\
0 & -1 & \lambda-12 & 0 \\
0 & 0 & 8-\lambda & 0
\end{array}\right] \begin{array}{l}
R_{3} \rightarrow R_{3}-R_{2}
\end{array}
\end{aligned}
$$

Case (i)
If $\lambda \neq 8$, then $\rho(A)=\rho([A \mid O])=3=$ number of unknowns
\therefore The given system of equations is consistent and has a unique solution or trivial solution.

Case (ii)

If $\lambda=8$, then $\rho(A)=\rho([A \mid 0])=2<$ number of unknowns
\therefore The given system is consistent and has a non-trival solution.

The given system has

(i) a unique solution when $\lambda \neq 8$
(ii) a non-trivial solution when $\lambda=8$
3. By using Gaussian elimination method, balance the chemical reaction equation:
$\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
We are searching for positive integers x_{1}, x_{2}, x_{3} and x_{4} such that

$$
\begin{equation*}
x_{1} \mathrm{C}_{2} \mathrm{H}_{6}+x_{2} \mathrm{O}_{2}=x_{3} \mathrm{H}_{2} \mathrm{O}+x_{4} \mathrm{CO}_{2} \tag{1}
\end{equation*}
$$

Equating carbon, Hydrogen and Oxygen atoms on the left-hand side of (1) to the respective carbon, Hydrogen and Oxygen atoms on the right-hand side of (1), we get the system of linear equations.

$$
\begin{array}{ll}
2 x_{1}=x_{4} & \Rightarrow 2 x_{1}-x_{4}=0 \\
6 x_{1}=2 x_{3} & \Rightarrow 3 x_{1}-x_{3}=0 \\
2 x_{2}=x_{3}+2 x_{4} & \Rightarrow 2 x_{2}-x_{3}-2 x_{4}=0
\end{array}
$$

The matrix form is $A X=0$, where $A=\left[\begin{array}{cccc}2 & 0 & 0 & -1 \\ 3 & 0 & -1 & 0 \\ 0 & 2 & -1 & -2\end{array}\right], X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right], O=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
The augmented matrix is

$$
\begin{aligned}
{[A \mid O] } & =\left[\begin{array}{cccc}
2 & 0 & 0 & -1 \\
3 & 0 & -1 & 0 \\
0 & 2 & -1 & -2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc|c}
2 & 0 & 0 & -1 & 0 \\
0 & 0 & -2 & 3 & 0 \\
0 & 2 & -1 & -2 & 0 \\
0
\end{array}\right] R_{2} \rightarrow 2 R_{2}-3 R_{1} \\
& \rightarrow\left[\begin{array}{cccc|c}
2 & 0 & 0 & -1 & 0 \\
0 & 2 & -1 & -2 & 0 \\
0 & 0 & -2 & 3 & 0
\end{array}\right] R_{2} \leftrightarrow R_{3}
\end{aligned}
$$

$\rho(A)=\rho([A \mid O])=3<$ no. of unknowns
\therefore The system is consistent and has infinite number of solutions. The equivalent system of equations:

$$
\begin{align*}
& 2 x_{1}-x_{4}=0 \tag{1}\\
& 2 x_{2}-x_{3}-2 x_{4}=0 \tag{2}\\
& -2 x_{3}+3 x_{4}=0 \tag{3}
\end{align*}
$$

Let $x_{4}=t, t \in R-\{0\}$
(1) $\Rightarrow 2 x_{1}-t=0 \Rightarrow x_{1}=\frac{t}{2}$
(3) $\Rightarrow-2 x_{3}+3 t=0 \Rightarrow x_{3}=\frac{3 t}{2}$
(2) $\Rightarrow-2 x_{2}-\frac{3 t}{2}-2 t=0$

$$
\begin{aligned}
& -2 x_{2}-\frac{7 t}{2}=0 \\
& -2 x_{2}=\frac{7 t}{2} \Rightarrow x_{2}=\frac{7 t}{4}
\end{aligned}
$$

Let us choose $t=4$
$x_{1}=\frac{4}{2}=2, \quad x_{2}=\frac{7 \times 4}{4}=7, \quad x_{3}=\frac{3 \times 4}{2}=6, \quad x_{4}=4$
So, the balanced equation is $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}$

EXERCISE 1.8

Choose the correct answer:

1. If $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{9}$, then the order of the square matrix A is
(1) 3
(2) 4
(3) 2
(4) 5

We know that $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}$
where A is a non-singular matrix of order n.

$$
\text { So, } \begin{aligned}
(n-1)^{2} & =9 \\
\Rightarrow n-1 & =3 \\
\therefore n & =4
\end{aligned}
$$

\therefore order of the square matrix A is 4
2. If A is a 3×3 non-singular matrix such that $A A^{T}=A^{T} A$ and $B=A^{-1} A^{T}$, then $B B^{T}=$
(1) A
(2) B
(3) I
(4) B^{T}

$$
\begin{array}{rlrl}
B B^{T} & =\left[A^{-1} A^{T}\right]\left[A^{-1} A^{T}\right]^{T} & & \\
& =\left[A^{-1} A^{T}\right]\left[\left(A^{T}\right)^{T}\left(A^{-1}\right)^{T}\right] & & {\left[\because(A B)^{T}=B^{T} A^{T}\right]} \\
& =\left(A^{-1} A^{T}\right)\left(A\left(A^{T}\right)^{-1}\right) & & {\left[\because\left(A^{T}\right)^{T}=A,\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}\right]} \\
& =A^{-1}\left(A^{T} A\right)\left(A^{T}\right)^{-1} & & \\
& =A^{-1}\left(A A^{T}\right)\left(A^{T}\right)^{-1} & & \\
& =\left(A^{-1} A\right)\left[A^{T}\left(A^{T}\right)^{-1}\right] & & \\
& =(I)(I) & & \\
\therefore B B^{T} & =I & & \\
\end{array}
$$

3. If $A=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right], B=\operatorname{adj} A$ and $C=3 A$, then $\frac{|\operatorname{adj} B|}{|C|}=$
(1) $\frac{1}{3}$
(2) $\frac{1}{9}$
(3) $\frac{1}{4}$
(4) 1

$$
\begin{aligned}
\frac{|\operatorname{adj} B|}{|C|} & =\frac{|\operatorname{adj}(\operatorname{adj} A)|}{|3 A|} & & \\
& =\frac{|A|^{(2-1)^{2}}}{3^{2}|A|} & & {\left[\because \mid \operatorname{adj}\left(\operatorname{adjA)|=|A|^{(n-1)^{2}},\text {here}n=2]}\right.\right.} \\
& =\frac{|A|}{9|A|}=\frac{1}{9} & & {\left[|K A|=K^{n}|A| \text { Here } n=2\right] }
\end{aligned}
$$

4. If $A\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$, then $A=$
(1) $\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$
(2) $\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$
(3) $\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$
(4) $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$

$$
\begin{aligned}
A\left[\begin{array}{cc}
1 & -2 \\
1 & 4
\end{array}\right] & =\left[\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right] \\
A & =\left[\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right] \frac{1}{6}\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right] \\
A & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right] \\
A & =\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

5. If $A=\left[\begin{array}{ll}7 & 3 \\ 4 & 2\end{array}\right]$, then $9 I-A=$
(1) A^{-1}
(2) $\frac{A^{-1}}{2}$
(3) $3 A^{-1}$
(4) $2 A^{-1}$

$$
\begin{align*}
& A=\left[\begin{array}{ll}
7 & 3 \\
4 & 2
\end{array}\right], \quad|A|=14-12=2, \\
& A^{-1}
\end{align*}=\frac{1}{|A|} \text { adj } A=\frac{1}{2}\left[\begin{array}{cc}
2 & -3 \\
-4 & 7
\end{array}\right], \begin{array}{cc}
2 A^{-1} & =\left[\begin{array}{cc}
2 & -3 \\
-4 & 7
\end{array}\right] \tag{1}\\
9 I-A & =9\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
7 & 3 \\
4 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
9-7 & 0-3 \\
0-4 & 9-2
\end{array}\right]=\left[\begin{array}{cc}
2 & -3 \\
-4 & 7
\end{array}\right] \tag{2}
\end{array}
$$

From (1) \& (2), $9 I-A=2 A^{-1}$
6. If $A=\left[\begin{array}{ll}2 & 0 \\ 1 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}\right]$ then $|\operatorname{adj}(A B)|=$
(1) -40
(2) -80
(3) -60
(4) -20

$$
\mid \operatorname{adj}(A B|=|(\operatorname{adj} B)(\operatorname{adj} A)| \quad[\because \operatorname{adj}(A B)=(\operatorname{adjB})(\operatorname{adj} A)]
$$

$$
=|\operatorname{adj} B||\operatorname{adj} A| \quad[\because|A B|=|A||B|]
$$

$$
=|B|^{2-1}|A|^{2-1} \quad\left[|\operatorname{adj} A|=|A|^{n-1}\right]
$$

$$
\begin{aligned}
& |A|=10-0=10 \\
& |B|=0-8=-8 \\
& =|B||A| \\
& \mid \operatorname{adj}(A B \mid=(-8)(10)=-80
\end{aligned}
$$

7. If $P=\left[\begin{array}{ccc}1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2\end{array}\right]$ is the adjoint of 3×3 matrix A and $|A|=4$, then x is
(1) 15
(2) 12
(3) 14
(4) 11

$$
\operatorname{adj} A=P=\left[\begin{array}{ccc}
1 & x & 0 \\
1 & 3 & 0 \\
2 & 4 & -2
\end{array}\right]
$$

We know that $|\operatorname{adj} A|=|A|^{n-1}$

$$
\begin{aligned}
\Rightarrow 1(-6-0)-x(-2-0)+0 & =(4)^{3-1} \\
-6+2 x & =16 \\
2 x & =16+6=22 \\
x & =\frac{22}{2}=11
\end{aligned}
$$

8. If $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1\end{array}\right]$ and $A^{-1}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ then the value of a_{23} is
(1) 0
(2) -2
(3) -3
$|A|=3(2-0)-1(-2-0)-1(4+2)=6+2-6=2$
Co-factor of 2 in A is $=-\left|\begin{array}{cc}3 & -1 \\ 2 & 0\end{array}\right|=-(0+2)=-2$
The value of a_{23} in $A^{-1}=\frac{1}{|A|}$ (co-facor of 2 in a_{32} in A)

$$
=\frac{1}{2}(-2)=-1
$$

(4) -1
9. If A, B and C are invertible matrices of some order, then which one of the following is not true?
(1) $\operatorname{adj} A=|A| A^{-1}$
(2) $\operatorname{adj}(A B)=(a d j A)(a d j B)$
(3) $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$
(4) $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$

We know that $\operatorname{adj}(A B)=(\operatorname{adj} B)(\operatorname{adj} A)$
Thus option (2) is not true.
10. If $(A B)^{-1}=\left[\begin{array}{cc}12 & -17 \\ -19 & 27\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$, then $B^{-1}=$

MAR-20

$$
\begin{aligned}
\text { (1) }\left[\begin{array}{cc}
\mathbf{2} & -\mathbf{5} \\
-\mathbf{3} & 8
\end{array}\right] & (2)\left[\begin{array}{ll}
8 & 5 \\
3 & 2
\end{array}\right] \\
\left.\begin{array}{rl}
(A B)^{-1}=B^{-1} A^{-1} & =\left[\begin{array}{cc}
12 & -17 \\
-19 & 27
\end{array}\right] \\
B^{-1}\left(A^{-1} A\right) & =\left[\begin{array}{cc}
12 & -17 \\
-19 & 27
\end{array}\right] A \\
2 & 1
\end{array}\right] & (4)\left[\begin{array}{cc}
8 & -5 \\
-3 & 2
\end{array}\right] \\
B^{-1} & =\left[\begin{array}{cc}
12 & -17 \\
-19 & 27
\end{array}\right]\left(A^{-1}\right)^{-1} \\
B^{-1} & =\left[\begin{array}{cc}
12 & -17 \\
-19 & 27
\end{array}\right] \frac{1}{1}\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
36-34 & 12-17 \\
-57+54 & -19+27
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & -5 \\
-3 & 8
\end{array}\right]
\end{aligned}
$$

11. If $A^{T} A^{-1}$ is symmetric, then $A^{2}=$
(1) A^{-1}
(2) $\left(A^{T}\right)^{2}$
(3) A^{T}
(4) $\left(A^{-1}\right)^{2}$

Given that $A^{T} A^{-1}$ is symmetric

$$
\begin{aligned}
& \therefore\left(A^{T} A^{-1}\right)^{T}=A^{T} A^{-1} \\
&\left(A^{-1}\right)^{T}\left(A^{T}\right)^{T}=A^{T} A^{-1} \\
&\left(A^{-1}\right)^{T}(A)=A^{T} A^{-1} \\
&\left(A^{T}\right)^{-1}(A)(A)=A^{T}\left(A^{-1} A\right) \\
&\left(A^{T}\right)^{-1} A^{2}=A^{T}(I)=A^{T} \\
&\left(A^{T}\right)\left(A^{T}\right)^{-1} A^{2}=\left(A^{T}\right)\left(A^{T}\right) \\
& I A^{2}=\left(A^{T}\right)^{2} \\
& \therefore A^{2}=\left(A^{T}\right)^{2}
\end{aligned}
$$

12. If A is a non-singular matrix such that $A^{-1}=\left[\begin{array}{cc}5 & 3 \\ -2 & -1\end{array}\right]$, then $\left(A^{T}\right)^{-1}=$
(1) $\left[\begin{array}{cc}-5 & 3 \\ 2 & 1\end{array}\right]$
(2) $\left[\begin{array}{cc}5 & 3 \\ -2 & -1\end{array}\right]$
(3) $\left[\begin{array}{cc}-1 & -3 \\ 2 & 5\end{array}\right]$
(4) $\left[\begin{array}{ll}5 & -2 \\ 3 & -1\end{array}\right]$
$A^{-1}=\left[\begin{array}{cc}5 & 3 \\ -2 & -1\end{array}\right]$
$\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}=\left[\begin{array}{ll}5 & -2 \\ 3 & -1\end{array}\right]$
13. If $A=\left[\begin{array}{ll}\frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5}\end{array}\right]$ and $A^{T}=A^{-1}$, then the value of x is
(1) $-\frac{4}{5}$
(2) $-\frac{3}{5}$
(3) $\frac{3}{5}$
(4) $\frac{4}{5}$

$$
A A^{T}=I
$$

$\frac{1}{5}\left[\begin{array}{cc}3 & 4 \\ 5 x & 3\end{array}\right] \frac{1}{5}\left[\begin{array}{cc}3 & 5 x \\ 4 & 3\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]$
Multiply and equating a_{12}

$$
\begin{aligned}
\frac{1}{25}[15 x+12] & =0 \\
15 x & =-12 \\
x & =-\frac{4}{5}
\end{aligned}
$$

14. If $A=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ and $A B=I_{2}$, then $B=$
(1) $\left(\cos ^{2} \frac{\theta}{2}\right) A$
(2) $\left(\cos ^{2} \frac{\theta}{2}\right) A^{T}$
(3) $\left(\cos ^{2} \theta\right) I$
(4) $\left(\sin ^{2} \frac{\theta}{2}\right) A$
$A B=I \Rightarrow B=A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
$B=\frac{1}{1+\tan ^{2} \frac{\theta}{2}}\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]$
$=\frac{1}{\sec ^{2} \frac{\theta}{2}} A^{T}=\left(\cos ^{2} \frac{\theta}{2}\right) A^{T}$
15. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $A(\operatorname{adj} A)=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$, then $k=$
(1) 0
(2) $\sin \theta$
(3) $\cos \theta$
(4)1

$$
\begin{aligned}
A(\operatorname{adj} A) & =\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]=K I=|A| I \\
|A| & =K \\
\cos ^{2} \theta+\sin ^{2} \theta & =K \\
\therefore k & =1
\end{aligned}
$$

16. If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ be such that $\lambda A^{-1}=A$, then λ is
(1) 17
(2) 14
(3) 19
(4) 21

$$
\begin{aligned}
\lambda A^{-1} & =A \\
\lambda\left(A A^{-1}\right) & =(A) A \\
\lambda I & =A^{2} \\
\lambda\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] & =\left[\begin{array}{cc}
2 & 3 \\
5 & -2
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
5 & -2
\end{array}\right] \\
{\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] } & =\left[\begin{array}{cc}
4+15 & 6-6 \\
10-10 & 15+4
\end{array}\right] \\
\lambda=4 & +15=19
\end{aligned}
$$

17. If $\operatorname{adj} A=\left[\begin{array}{cc}2 & 3 \\ 4 & -1\end{array}\right]$ and $\operatorname{adj} B=\left[\begin{array}{cc}1 & -2 \\ -3 & 1\end{array}\right]$ then $\operatorname{adj}(A B)$ is
(1) $\left[\begin{array}{cc}-7 & -1 \\ 7 & -9\end{array}\right]$
(2)
$\left[\begin{array}{cc}-6 & 5 \\ -2 & -10\end{array}\right]$
(3) $\left[\begin{array}{cc}-7 & 7 \\ -1 & -9\end{array}\right]$
(4) $\left[\begin{array}{cc}-6 & -2 \\ 5 & -10\end{array}\right]$

$$
\begin{aligned}
\operatorname{adj}(A B) & =(\operatorname{adjB)(\operatorname {adj}A)} \\
& =\left[\begin{array}{cc}
1 & -2 \\
-3 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
4 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2-8 & 3+2 \\
-6+4 & -9-1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-6 & 5 \\
-2 & -10
\end{array}\right]
\end{aligned}
$$

18. The rank of the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4\end{array}\right]$ is
(1) 1
(2) 2
(3) 4
(4) 3

$$
\begin{aligned}
A & =\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
-1 & -2 & -3 & -4
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] R_{2} \rightarrow R_{2}-2 R_{1} \\
& \therefore \rho(A)=1
\end{aligned}
$$

19. If $x^{a} y^{b}=e^{m}, x^{c} y^{d}=e^{n}, \Delta_{1}=\left|\begin{array}{ll}m & b \\ n & d\end{array}\right|, \Delta_{2}=\left|\begin{array}{ll}a & m \\ c & n\end{array}\right|, \Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$, then the values of x and y are respectively.

PTA-3
(1) $e^{\left(\frac{\Delta_{2}}{\Delta_{1}}\right)}, e^{\left(\frac{\Delta_{3}}{\Delta_{1}}\right)}$
(2) $\log \left(\Delta_{1} / \Delta_{3}\right), \log \left(\Delta_{2} / \Delta_{3}\right)$
(3) $\log \left(\Delta_{2} / \Delta_{1}\right), \log \left(\Delta_{3} / \Delta_{1}\right)$
(4) $\boldsymbol{e}^{\left(\frac{\Delta_{1}}{\Delta_{3}}\right)} \boldsymbol{e}^{\left(\frac{\Delta_{2}}{\Delta_{3}}\right)}$

$$
\begin{align*}
x^{a} y^{b} & =e^{m} \\
\log \left(x^{a} y^{b}\right) & =\log e^{m} \\
a \log x+b \log y & =m \log e \\
a \log x+b \log y & =m \tag{1}\\
x^{c} y^{d} & =e^{n} \\
\log \left(x^{c} y^{d}\right) & =\log e^{n} \\
c \log x+d \log y & =n \tag{2}
\end{align*}
$$

By Crammer's rule, we get

$$
\Delta=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|, \quad \Delta_{1}=\left|\begin{array}{ll}
m & b \\
n & d
\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{ll}
a & m \\
c & n
\end{array}\right|
$$

But, it is given that $\Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$

$$
\therefore \Delta=\Delta_{3}
$$

So, $\log _{e}^{x}=\frac{\Delta_{1}}{\Delta}=\frac{\Delta_{1}}{\Delta_{3}}$

$$
\begin{aligned}
& \Rightarrow x=e^{\left(\frac{\Lambda_{1}}{\Delta_{3}}\right)} \\
&=\frac{\Delta_{2}}{\Delta}=\frac{\Delta_{2}}{\Delta_{3}} \\
& \Rightarrow y=e^{\left(\frac{\Lambda_{2}}{\Delta_{3}}\right)}
\end{aligned}
$$

$$
\log _{e}^{y}=\frac{\Delta_{2}}{\Delta}=\frac{\Delta_{2}}{\Delta_{3}}
$$

20. Which of the following is / are correct?
(i) Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then $\operatorname{adj}(\lambda A)=\lambda^{n} \operatorname{adj}(A)$.
(iv) $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$
(1) Only (i)
(2) (ii) and (iii)
(3) (iii) and (iv)
(4) (i), (ii) and (iv)
$\operatorname{adj}(\lambda A)=\lambda^{n-1} \operatorname{adj}(A) \quad$ But given that $\operatorname{adj}(\lambda A)=\lambda^{n} \operatorname{adj}(A)$
So, (iii) only a wrong statement.
21. If $\rho(A)=\rho([A \mid B])$, then the system $A X=B$ of linear equations is

MAR-20 PTA-6
(1) consistent and has a unique solution
(2) consistent
(3) consistent and has infinitely many solution
(4) inconsistent
22. If $0 \leq \theta \leq \pi$ and the system of equations $x+(\sin \theta) y-(\cos \theta) z=0$, $(\cos \theta) x-y+z=0,(\sin \theta) x+y-z=0$ has a non-trivial solution then θ is
(1) $\frac{2 \pi}{3}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{\pi}{4}$

The system has a non-trivial solution. $\quad \therefore \Delta=\left|\begin{array}{ccc}1 & \sin \theta & -\cos \theta \\ \cos \theta & -1 & 1 \\ \sin \theta & 1 & -1\end{array}\right|=0$
$\Rightarrow 1(1-1)-\sin \theta(-\cos \theta-\sin \theta)-\cos \theta(\cos \theta+\sin \theta)=0$
$\Rightarrow \sin \theta \cos \theta+\sin ^{2} \theta-\cos ^{2} \theta-\sin \theta \cos \theta=0$

$$
\begin{aligned}
\sin ^{2} \theta-\cos ^{2} \theta & =0 \\
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\frac{\cos ^{2} \theta}{\cos ^{2} \theta} & =0 \\
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-1 & =0 \Rightarrow \tan ^{2} \theta=1 \Rightarrow \quad \tan \theta=1
\end{aligned}
$$

$\Rightarrow \theta=\frac{\pi}{4}[\because 0 \leq \theta \leq \pi]$
23. The augmented matrix of a system of linear equations is $\left[\begin{array}{rrrl}1 & 2 & & 7 \\ 0 & 1 & 3 \\ 0 & 0 & \lambda-7 & 6 \\ 0 & \mu+5\end{array}\right]$. The system has infinitely many solutions if
(1) $\lambda=7, \mu \neq-5$
(2) $\lambda=-7, \mu=5$
(3) $\lambda \neq 7, \mu \neq-5$
(4) $\lambda=7, \mu=-5$
Let $A=\left[\begin{array}{rrrl}1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda-7 & \mu+5\end{array}\right]$
If $\lambda=7, \mu=-5$ then $\rho(A)=2, \rho[(A \mid B)]=2$
$\therefore \rho(A)=\rho([A \mid B])=2<$ no. of unknowns

Thus, the given system is consistent and has infinitely many solutions if $\lambda=7, \mu=-5$
24. Let $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and $4 B=\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3\end{array}\right]$. If B is the inverse of A, then the value of x is
(1) 2
(2) 4
(3) 3
(4)1

$$
A B=\frac{1}{4} I
$$

Evaluate $a_{23}=0$ only

$$
\begin{array}{r}
1+2 x-3=0 \\
2 x=2 \\
x=1
\end{array}
$$

25. If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then $\operatorname{adj}(\operatorname{adj} A)$ is
(1) $\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$
(2) $\left[\begin{array}{lll}6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2\end{array}\right]$
(3) $\left[\begin{array}{ccc}-3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1\end{array}\right]$
(4) $\left[\begin{array}{lll}3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4\end{array}\right]$
$A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$
$|A|=3[-3+4]+3[2-0]+4[-2-0]=3(1)+3(2)+4(-2)=3+6-8=1$
$\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A=(1)^{3-2}\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$
$\therefore \operatorname{adj}(\operatorname{adj} A)=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$

Creative Questions

Choose the correct or the most suitable answer from the given four alternatives

1. If A and B are orthogonal, then $(A B)^{T}(A B)$ is

PTA-1
(1) A
(2) B
(3) I
(4) A^{T}
2. The adjoint of 3×3 matrix P is $\left[\begin{array}{ccc}-1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then the possible values of the determinant P is (are)
(1) 3
(2) -3
(3) ± 3
(4) $\pm \sqrt{3}$
$\operatorname{adj} P=\left[\begin{array}{ccc}-1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
$|\operatorname{adj} P|=-1(1-4)-2(1-4)+2(2-2)$
$=-1(-3)-2(-3)+0=3+6=9$
$|P|= \pm \sqrt{|a d j P|}= \pm \sqrt{9}$
$|P|= \pm 3$
3. If A is a 3×3 matrix such that $|3 \operatorname{adj} A|=3$ then $|A|$ is equal to

PTA-5
(1) $\frac{1}{3}$
(2) $-\frac{1}{3}$
(3) $\pm \frac{1}{3}$
(4) ± 3

$$
\begin{array}{lc}
|3 \operatorname{adj} A|=3 & \left(\because|k A|=k^{3}|A|\right) \\
3^{3}|\operatorname{adj} A|=3 & \left(\because|\operatorname{adj} A|=|A|^{n-1}\right) \\
27|A|^{3-1}=3 & \\
|A|^{2}=\frac{3}{27}=\frac{1}{9} \Rightarrow & |A|= \pm \frac{1}{3}
\end{array}
$$

4. Let A be a non-singular matrix then which one of the following is false
(1) $(\operatorname{adj} A)^{-1}=\frac{A}{|A|}$
(2) I is an orthogonal matrix
(3) $\operatorname{adj}(\operatorname{adj} A)=|A|^{n} A$
(4) If A is symmetric then $a d j A$ is symmetric
5. If for a matrix $A,|A|=6$ and $\operatorname{adj} A=\left[\begin{array}{ccc}1 & -2 & 4 \\ 4 & 1 & 1 \\ -1 & \lambda & 0\end{array}\right]$, then λ is equal to
(1) -1
(2) 0
(3) 1
(4) 2

We know that $|\operatorname{adj} A|=|A|^{3-1}=|A|^{2}$

$$
\begin{aligned}
1(0-\lambda)+2(0+1)+4(4 \lambda+1) & =6^{2} \\
-\lambda+2+16 \lambda+4 & =36 \\
15 \lambda+6 & =36 \\
\Rightarrow 15 \lambda=36-6 & =30 \\
\Rightarrow \lambda=\frac{30}{15} & =2
\end{aligned}
$$

6. If $\operatorname{adj} A=\left(\begin{array}{cc}-2 & 1 \\ 4 & 3\end{array}\right)$ and $\operatorname{adj} B=\left(\begin{array}{cc}4 & -5 \\ 1 & 7\end{array}\right)$ then $A B$ is
(1) $\left(\begin{array}{cc}22 & 11 \\ -26 & -28\end{array}\right)$
(2) $\left(\begin{array}{ll}-28 & 11 \\ -26 & 22\end{array}\right)$
(3) $\left(\begin{array}{ll}22 & -26 \\ 11 & -28\end{array}\right)$
(4) $\left(\begin{array}{cc}-22 & -11 \\ 26 & 28\end{array}\right)$

$$
\begin{aligned}
\operatorname{adj}(A B) & =(\operatorname{adjB})(\operatorname{adj} A) \\
& =\left(\begin{array}{cc}
4 & -5 \\
1 & 7
\end{array}\right)\left(\begin{array}{cc}
-2 & 1 \\
4 & 3
\end{array}\right)=\left(\begin{array}{cc}
-8-20 & 4-15 \\
-2+28 & 1+21
\end{array}\right) \\
& =\left(\begin{array}{cc}
-28 & -11 \\
26 & 22
\end{array}\right) \\
\therefore A B & =\left(\begin{array}{cc}
22 & 11 \\
-26 & -28
\end{array}\right)
\end{aligned}
$$

7. If $A=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$ then $A(\operatorname{adj} A)=$?
(1) $\left[\begin{array}{ccc}-\cos \theta & \sin \theta & 0 \\ -\sin \theta & -\cos \theta & 0 \\ 0 & 0 & -1\end{array}\right]$ (2) $\left[\begin{array}{lll}\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]$
(3) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
(4) $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
$|A|=\cos \theta[\cos \theta-0]+\sin \theta[\sin \theta-0]$
$=\cos ^{2} \theta+\sin ^{2} \theta=1$
$|A|=1$
$A(\operatorname{adj} A)=|A| I_{3}=1\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
8. If the matrix $\left[\begin{array}{cc}x+2 & 0 \\ x^{4} & x-1\end{array}\right]$ has no inverse then the value of $x=$
(1) 1
(2) 2
(3) 1
(4) 1 and 2

$$
\text { Let } A=\left[\begin{array}{cc}
x+2 & 0 \\
x^{4} & x-1
\end{array}\right]
$$

If A^{-1} does not exist, then $|A|=0$
$\Rightarrow(x+2)(x-1)-0=0$

$$
(x+2)(x-1)=0
$$

$$
\therefore x=-2 \text { (or) } x=1
$$

9. If A and B are two non-singular matrices then $\left|B^{-1} A B\right|=$
(1) A
(2) $|A|$
(3) $|B|$
(4) $\left|B^{-1}\right|$

$$
\begin{aligned}
\left|B^{-1} A B\right| & =\left|B^{-1}\right||A||B| \\
& =\left|B^{1} B\right||A| \\
& =|I||A| \\
& =(1)|A| \\
& =|A|
\end{aligned}
$$

10. If A is a non - singular matrix, then $\left|A^{-1}\right|=$
(1) $\left|\frac{1}{A^{2}}\right|$
(2) $\frac{1}{\left|A^{2}\right|}$
(3) $\left|\frac{1}{A}\right|$
(4) $\frac{1}{|A|}$
11. If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 5 & 5 & 5 \\ 8 & 8 & 8\end{array}\right]$ then
(1) $A^{2}=9 A$
(2) $A^{2}=27 A$
(3) $A+A=A^{2}$
(4) A^{-1} does not exist
$|A|=1(40-40)-1(40-40)+1(40-40)$
$|A|=0$
$\therefore A^{-1}$ does not exist
12. If $A=\left[\begin{array}{rr}2 & -1 \\ 3 & 4\end{array}\right]$ then $\left|\left(A^{-1}\right)^{-1}\right|$
(1) 11
(2) -11
(3) $\frac{1}{11}$
(4) None

$$
\begin{aligned}
& |A|=8+3=11 \\
& \left|\left(A^{-1}\right)^{-1}\right|=|A|=11
\end{aligned}
$$

13. If $A=\left[\begin{array}{cc}-1 & 3 \\ 2 & 1\end{array}\right]$ then $I+A+A^{2}+\cdots \infty=$
(1) $\left[\begin{array}{ll}0 & 3 \\ 2 & 3\end{array}\right]$
(2) $\frac{1}{6}\left[\begin{array}{cc}0 & -3 \\ -2 & -2\end{array}\right]$
(3) $\left[\begin{array}{cr}0 & -3 \\ -2 & 2\end{array}\right]$
(4) $\frac{1}{6}\left[\begin{array}{cc}0 & 3 \\ -2 & 2\end{array}\right]$
$I-A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{cc}-1 & 3 \\ 2 & 1\end{array}\right]=\left[\begin{array}{rr}2 & -3 \\ -2 & 0\end{array}\right]$
$|I-A|=0-6=-6$
$(I-A)^{-1}=\frac{1}{|I-A|} \operatorname{adj}(I-A)$
$\therefore 1+A+A^{2}+\cdots+\infty=\frac{1}{-6}\left[\begin{array}{ll}0 & 3 \\ 2 & 2\end{array}\right]=\frac{1}{6}\left[\begin{array}{cc}0 & -3 \\ -2 & -2\end{array}\right]$
14. If $A=\left[\begin{array}{ll}5 & -2 \\ 3 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}-1 & 2 \\ -3 & 5\end{array}\right]$ then A and B are
(1) Non- singular matrices
(2) Square matrices
(3) Inverse to each other
(4) All of these

$$
|A|=-5+6=1,|B|=-5+6=1
$$

$\Rightarrow A$ and B are non - singular matrices. A and B are square matrices
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{1}\left[\begin{array}{ll}-1 & 2 \\ -3 & 5\end{array}\right]=\left[\begin{array}{ll}-1 & 2 \\ -3 & 5\end{array}\right]=B$
$\therefore \mathrm{A}$ and B both are inverse each other.
Thus , Answer is " all of these"
15. If $10 A-50 I=0$ and $A=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]$ then A^{-1} is
(1) $5 I$
(2) $-\frac{1}{5} I$
(3) $\frac{1}{5} I$
(4) $-5 I$

$$
10 A-50 I=0
$$

Pre - multiplying by A^{-1}, we get

$$
\begin{aligned}
& 10\left(A^{-1} A\right)-50\left(A^{-1} I\right)=0 \\
& 10 I-50 A^{-1}=0 \\
& 10 I=50 A^{-1} \\
& A^{-1}=\frac{10}{50} I=\frac{1}{5} I
\end{aligned}
$$

16. $\operatorname{adj}\left(I_{2}\right)=$?
(1) $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$
(2) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(3) $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
(4) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

$$
\begin{aligned}
& \operatorname{adj}\left(I_{n}\right)=I_{n} \\
& \Rightarrow \operatorname{adj}\left(I_{2}\right)=I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

17. If $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ and $|\operatorname{adj} A|=81$ then $|A|$ is
(1) 9
(2) 81
(3) 18
(4) ± 9

$$
\begin{aligned}
|\operatorname{adj} A| & =\left|A^{2}\right|=81 \\
& \Rightarrow|A|= \pm 9
\end{aligned}
$$

18. If $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right]$ then $|\operatorname{adj}(4 A)|$ is
(1) 44
(2) 11
(3) 176
(4) 121

$$
\begin{aligned}
|A|=8+3 & =11 \\
|\operatorname{adj}(4 A)| & =k^{n(n-1)}|A|^{n-1} \\
|\operatorname{adj}(4 A)| & =4^{2(2-1)}|A|^{2-1} \\
& =4^{2}|A| \\
& =16[11]=176
\end{aligned}
$$

$$
\text { (OR) } \quad \begin{aligned}
\text { adj } \lambda A & =\lambda^{n-1} \operatorname{adj} A \\
|\operatorname{adj} K A| & =\mid K^{1} \text { adj } A \mid \\
& =4^{2} \mid \text { adj } A|=16| A \mid \\
& =16 \times 11 \\
& =176
\end{aligned}
$$

19. If A is 3×3 matrix such that $|5 \operatorname{adj} A|=5$ then $|A|$ is equal to
(1) $\pm \frac{1}{5}$
(2) ± 5
(3) ± 1
(4) $\pm \frac{1}{25}$

$$
\begin{aligned}
\mid 5 \text { adj } A \mid=5 \\
\Rightarrow 5^{3} \mid \text { adj } A \mid=5 \\
\Rightarrow 125|A|^{2}=5 \\
\Rightarrow|A|^{2}=\frac{5}{125}=\frac{1}{25} \\
|A|= \pm \frac{1}{5}
\end{aligned}
$$

20. The rank of the matrix $\left[\begin{array}{cc}2 & 5 \\ -3 & 4\end{array}\right]$ is
(1) 1
(2) 2
(3) 3
(4) 5

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{cc}
2 & 5 \\
-3 & 4
\end{array}\right] \\
& \quad|A|=8+15=23 \neq 0 \\
& \therefore \rho(A)=2
\end{aligned}
$$

21. If $k=5$ then the rank of the matrix $A=\left[\begin{array}{lll}5 & k & k \\ k & 5 & k \\ k & k & 5\end{array}\right]$ is
(1) 1
(2) 2
(3) 3
(4) 0

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
5 & k & k \\
k & 5 & k \\
k & k & 5
\end{array}\right] \quad \sim\left[\begin{array}{lll}
5 & 5 & 5 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{2}
\end{array} \\
& \rho(A)=1
\end{aligned}
$$

22. The system of equations $x-2 y+z=0, y-z=3,2 x-3 z=10$ is
(1) Inconsistent
(2) consistent
(3) consistent and has infinite number of solutions
(4) consistent and has unique solution.

Matrix form of the equation is

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
2 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
3 \\
10
\end{array}\right]} \\
& \mathrm{A} \quad \mathrm{X} \text { B } \\
& |A|=1(-3-0)+2(0+2)+1(0-2) \\
& \quad=-3+4-2=-1 \neq 0
\end{aligned}
$$

\therefore The system is consistent and has unique solution.
23. If the rank of the matix $\left[\begin{array}{ccc}\lambda & -2 & 0 \\ 0 & \lambda & -2 \\ -2 & 0 & \lambda\end{array}\right]$ is 2 , then λ is
(1) 1
(2) 2
(3) 3
(4) 4

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ccc}
\lambda & -2 & 0 \\
0 & \lambda & -2 \\
-2 & 0 & \lambda
\end{array}\right] \\
& \text { If } \rho(A)=2, \text { then }|A|=0 \\
& \Rightarrow \lambda\left(\lambda^{2}-0\right)+2(0-4)+0=0 \\
& \Rightarrow \lambda^{3}-8
\end{aligned}=0, \begin{aligned}
\Rightarrow \lambda^{3} & =8=2^{3} \\
\Rightarrow \lambda & =2
\end{aligned}
$$

24. If $\rho(A)=\rho([(A \mid B)])=3$ the numbers of unknowns then the system is
(1) Consistent
(2) inconsistent
(3) consistent and has unique solution
(4) consistent and has infinitely many solutions

2 Marks

1. If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], B=\left[\begin{array}{ll}4 & 0 \\ 2 & 5\end{array}\right]$, find $\operatorname{adj}(A B)$.

$$
\begin{aligned}
A B & =\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
2 & 5
\end{array}\right] \\
& =\left[\begin{array}{cc}
14 & 15 \\
8 & 10
\end{array}\right] \\
\operatorname{adj}(A B) & =\left[\begin{array}{cc}
10 & -15 \\
-8 & 14
\end{array}\right]
\end{aligned}
$$

2. If A is a non-singular matrix of odd order, prove that $|\operatorname{adj}(A)|$ is positive. PTA-4
Let A be a non-singular matrix of order
$2 \mathrm{~m}+1$ where $\mathrm{m}=0,1,2$..........
$\therefore|A| \neq 0$
We know $|\operatorname{Adj} A|=|A|^{n-1} \quad(n=2 m+1)$
$=|A|^{2 m}>0$
$\therefore|\operatorname{adj} A|$ is positive.

$$
\text { 3. If } \begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{lll}
\mathbf{1} & \mathbf{0} & \mathbf{2} \\
\mathbf{2} & \mathbf{1} & \mathbf{0} \\
\mathbf{3} & \mathbf{2} & \mathbf{1}
\end{array}\right] \text { then find }|\boldsymbol{a d j} \boldsymbol{A}| \\
A & =\left[\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right] \\
|A| & =1(1-0)-0+2(4-3) \\
& =1-0+2=3
\end{aligned}
$$

$|\operatorname{adj} A|=|A|^{3-1} \quad\left[\because|\operatorname{adj} A|=|A|^{n-1}\right]$

$$
=|A|^{2}=3^{2}=9
$$

4. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3\end{array}\right]$ find $|\operatorname{adj}(3 A)|$

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 5 & 0 \\
2 & 4 & 3
\end{array}\right]
$$

$$
|A|=1(15-0)-2(0-0)+3(0-10)
$$

$$
=15-0-30=-15
$$

$|\operatorname{adj}(3 A)|=3^{3(3-1)}(-15)^{3-1}$

$$
\begin{aligned}
& {\left[\because|\operatorname{adj}(k A)|=k^{n(n-1)}|A|^{n-1}\right]} \\
& \quad=3^{6}(-15)^{2} \\
& \quad=729 \times 225=164025
\end{aligned}
$$

5. If $\begin{aligned} A & =\left[\begin{array}{ccc}\mathbf{1} & -\mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{3} & \mathbf{0} \\ \mathbf{2} & \mathbf{2} & 4\end{array}\right] \text { find }|\boldsymbol{a d j}(\boldsymbol{a d j} \boldsymbol{A})| \\ A & =\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 3 & 0 \\ 2 & 2 & 4\end{array}\right]\end{aligned}$

$$
\begin{aligned}
|A| & =1(12-0)+1(4-0)+1(2-6) \\
& =12+4-4=12
\end{aligned}
$$

$$
|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}
$$

$$
=(12)^{(3-1)^{2}}
$$

$$
=12^{4}
$$

$$
=20736
$$

6. If $B=\left[\begin{array}{cc}4 & 3 \\ 5 & -1\end{array}\right]$ then find $|B(a d j B)|$

$$
\begin{aligned}
& B=\left[\begin{array}{cc}
4 & 3 \\
5 & -1
\end{array}\right] \\
& \quad\left[\because|A B|=|A||B|, \quad|\operatorname{adj} A|=|A|^{n-1}\right] \\
& |B|=-4-15=-19 \\
& |B(\operatorname{adjB})|=|B||\operatorname{adj} B| \\
& \quad=|B||B|^{2-1} \\
& \quad=|B|^{2} \\
& \quad=(-19)^{2} \\
& \quad=361
\end{aligned}
$$

7. If $B=\left[\begin{array}{lll}1 & x & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of a 3×3 matrix A and $|A|=4$, then find x

Given: $B=\operatorname{adj} A$

$$
\begin{aligned}
& |B|=|\operatorname{adj} A|=|A|^{2} \\
& 1(12-12)-x(4-6)+3(4-6)=4^{2} \\
& 0+2 x-6=16 \\
& 2 x=16+6 \\
& 2 x=22 \\
& x=\frac{22}{2} \\
& x=11
\end{aligned}
$$

8. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2 \\ 1 & 0 & 3\end{array}\right]$ find $(\operatorname{adj} A) A$

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
1 & 0 & 3
\end{array}\right] \\
|A| & =1(3-0)-2(9-2)+3(0-1) \\
& =3-14-3 \\
& =-14
\end{aligned}
$$

$(\operatorname{adj} A) A=|A| I$

$$
\begin{aligned}
& =-14\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-14 & 0 & 0 \\
0 & -14 & 0 \\
0 & 0 & -14
\end{array}\right]
\end{aligned}
$$

9. Find the rank of the following matrices by minor method:
(i) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$
(ii) $\left[\begin{array}{cc}1 & 3 \\ 2 & -1 \\ -1 & -3\end{array}\right]$
(i) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$

Order of the matrix A is 2×3

$$
\therefore \rho(A) \leq \min \{2,3\}=2
$$

We find that the second order minor

$$
\begin{aligned}
& \left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right|=3-4=-1 \neq 0 \\
& \rho(A)=2
\end{aligned}
$$

(ii) Let $A=\left[\begin{array}{cc}1 & 3 \\ 2 & -1 \\ -1 & -3\end{array}\right]$

Order of the matrix A is 3×2
$\therefore \rho(A) \leq \min \{3,2\}=2$
We find that the second order minor

$$
\begin{aligned}
\left|\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right| & =-1-6 \\
& =-7 \neq 0 \\
\rho(A) & =2
\end{aligned}
$$

10. Solve the following system of linear equations by using Cramer's Rule

$$
3 x-y=3,2 x+y=7
$$

$\Delta=\left|\begin{array}{cc}3 & -1 \\ 2 & 1\end{array}\right|=3+2=5$
$\Delta=5$
$\Delta_{1}=\left|\begin{array}{cc}3 & -1 \\ 7 & 1\end{array}\right|=3+7=10$
$\Delta_{1}=10$
$\Delta_{2}=\left|\begin{array}{ll}3 & 3 \\ 2 & 7\end{array}\right|=21-6=15$
$\Delta_{2}=15$
By Cramer's Rule,
$x=\frac{\Delta_{1}}{\Delta}=\frac{10}{5}=2$
$y=\frac{\Delta_{2}}{\Delta}=\frac{15}{5}=3$
The solution is $x=2, y=3$
11.Solve the following system of linear equation by matrix inversion method.
$2 x+3 y=23,3 x+4 y=32$
The matrix form is $A X=B$, where
$A=\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right], B=\left[\begin{array}{l}23 \\ 32\end{array}\right]$
$|A|=8-9=-1 \neq 0$
A^{-1} exists

$$
\operatorname{adj} A=\left[\begin{array}{cc}
4 & -3 \\
-3 & 2
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

$$
A^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
4 & -3 \\
-3 & 2
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-4 & 3 \\
3 & -2
\end{array}\right]
$$

$A X=B$

$$
\begin{aligned}
X=A^{-1} B & =\left[\begin{array}{cc}
-4 & 3 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
23 \\
32
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{c}
-92+96 \\
69-64
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{l}
4 \\
5
\end{array}\right]
\end{aligned}
$$

The solution is $(x, y)=(4,5)$

3 Marks

1. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$, find the value of

$$
\begin{aligned}
& \lambda \text { so that } A^{2}=\lambda A-2 I . \\
& \begin{array}{c}
A=\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right] \\
A^{2}=\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right]\left[\begin{array}{ll}
3 & -2 \\
4 & -2
\end{array}\right] \\
=\left[\begin{array}{cc}
9-8 & -6+4 \\
12-8 & -8+4
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right] \\
\lambda A-2 I=\left[\begin{array}{ll}
3 \lambda & -2 \lambda \\
4 \lambda & -2 \lambda
\end{array}\right]-\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
=\left[\begin{array}{cc}
3 \lambda-2 & -2 \lambda \\
4 \lambda & -2 \lambda-2
\end{array}\right]
\end{array}
\end{aligned}
$$

PTA-2

Given, $A^{2}=\lambda A-2 I$

$$
\therefore\left[\begin{array}{ll}
1 & -2 \\
4 & -4
\end{array}\right]=\left[\begin{array}{cc}
3 \lambda-2 & -2 \lambda \\
4 \lambda & -2 \lambda-2
\end{array}\right]
$$

Equating the corresponding elements

$$
\begin{gathered}
\therefore 4 \lambda=4 \\
\\
\lambda=1
\end{gathered}
$$

2. Find the rank of the matrix

$$
\begin{array}{rl}
A= & {\left[\begin{array}{cccc}
\mathbf{4} & -\mathbf{2} & \mathbf{6} & \mathbf{8} \\
\mathbf{1} & \mathbf{1} & -\mathbf{3} & -\mathbf{1} \\
\mathbf{1 5} & -\mathbf{3} & \mathbf{9} & \mathbf{2 1}
\end{array}\right]} \\
& \sim\left[\begin{array}{cccc}
4 & -2 & 6 & 8 \\
1 & 1 & -3 & -1 \\
15 & -3 & 9 & 21
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 1 & -3 & -1 \\
4 & -2 & 6 & 8 \\
15 & -3 & 9 & 21
\end{array}\right] R_{1} \leftrightarrow R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & -3 & -1 \\
0 & -6 & 18 & 12 \\
0 & -18 & 54 & 36
\end{array}\right] \begin{array}{c}
1 \\
R_{2} \rightarrow R_{2}-4 R_{1} \\
R_{3} \rightarrow R_{3}-15 R_{1} \\
0
\end{array} \frac{-6}{} 18 \\
0 & 0
\end{array} 0
$$

3. Solve by matrix inversion method: $5 x+2 y=4,7 x+3 y=5 . \quad$ PTA-5

$$
\begin{aligned}
{\left[\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{l}
4 \\
5
\end{array}\right] \\
A X & =B \\
X & =A^{-1} B
\end{aligned}
$$

$$
|A|=1
$$

$$
\operatorname{adj} A=\left[\begin{array}{cc}
3 & -2 \\
-7 & 5
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

$$
=\frac{1}{1}\left[\begin{array}{cc}
3 & -2 \\
-7 & 5
\end{array}\right]
$$

$$
A^{-1}=\left[\begin{array}{cc}
3 & -2 \\
-7 & 5
\end{array}\right]
$$

$$
X=A^{-1} B
$$

$$
=\left[\begin{array}{cc}
3 & -2 \\
-7 & 5
\end{array}\right]\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

$$
x=2 \& y=-3
$$

4. Find the adjoint of the matrix $A=\left[\begin{array}{cc}1 & 3 \\ 2 & -5\end{array}\right]$ and verify that $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$
$\therefore A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & 3 \\
2 & -5
\end{array}\right]|A|=-11 \\
& \operatorname{adj} A=\left[\begin{array}{cc}
-5 & -3 \\
-2 & 1
\end{array}\right] \\
& A(\operatorname{adj} A)=\left[\begin{array}{cc}
1 & 3 \\
2 & -5
\end{array}\right]\left[\begin{array}{cc}
-5 & -3 \\
-2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-11 & 0 \\
0 & -11
\end{array}\right] \\
& (\operatorname{adj} A) A=\left[\begin{array}{cc}
-5 & -3 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 3 \\
2 & -5
\end{array}\right] \\
& =\left[\begin{array}{cc}
-11 & 0 \\
0 & -11
\end{array}\right] \\
& |A| I=-11\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right] \\
& =\left[\begin{array}{cc}
-11 & 0 \\
0 & -11
\end{array}\right]
\end{aligned}
$$

5. Find the adjoint of $\frac{1}{5}\left[\begin{array}{lll}2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$

Let $B=\frac{1}{5}\left[\begin{array}{lll}2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$
Let us consider $A=\left[\begin{array}{lll}2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$

$$
\begin{aligned}
\operatorname{adj} A & =\left[\begin{array}{ccc}
\left|\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right| & -\left|\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right| & \left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right| \\
-\left|\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right| & \left|\begin{array}{cc}
2 & 3 \\
1 & 1
\end{array}\right| & -\left|\begin{array}{cc}
2 & 5 \\
1 & 2
\end{array}\right| \\
\left|\begin{array}{ll}
5 & 3 \\
1 & 2
\end{array}\right| & -\left|\begin{array}{cc}
2 & 3 \\
3 & 2
\end{array}\right| & \left|\begin{array}{cc}
2 & 5 \\
3 & 1
\end{array}\right|
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
(1-4) & -(3-2) & (6-1) \\
-(5-6) & (2-3) & -(4-5) \\
(10-3) & -(4-9) & (2-15)
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
-3 & -1 & 5 \\
1 & -1 & 1 \\
7 & 5 & -13
\end{array}\right]^{T}
\end{aligned}
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
-3 & 1 & 7 \\
-1 & -1 & 5 \\
5 & 1 & -13
\end{array}\right]
$$

$$
\operatorname{adj} B=\operatorname{adj}\left(\frac{1}{5} A\right)
$$

$$
=\left(\frac{1}{5}\right)^{3-1} \operatorname{adj} A
$$

$$
\left[\because \operatorname{adj}(k A)=k^{n-1} \operatorname{adj} A\right]
$$

$$
\operatorname{adj} B=\frac{1}{25}\left[\begin{array}{ccc}
-3 & 1 & 7 \\
-1 & -1 & 5 \\
5 & 1 & -13
\end{array}\right]
$$

6. If $A=\left[\begin{array}{cc}2 & -3 \\ 1 & 5\end{array}\right]$ prove that

$$
\begin{align*}
& \operatorname{adj}\left(\boldsymbol{A}^{\boldsymbol{T}}\right)=(\boldsymbol{a d j} \boldsymbol{A})^{\boldsymbol{T}} \\
& A=\left[\begin{array}{cc}
2 & -3 \\
1 & 5
\end{array}\right], \quad A^{T}=\left[\begin{array}{cc}
2 & 1 \\
-3 & 5
\end{array}\right] \\
& \operatorname{adj}\left(A^{T}\right)=\left[\begin{array}{cc}
5 & -1 \\
3 & 2
\end{array}\right] \quad \ldots \tag{1}\\
& \qquad A=\left[\begin{array}{cc}
2 & -3 \\
1 & 5
\end{array}\right] \\
& \operatorname{adj} A=\left[\begin{array}{cc}
5 & 3 \\
-1 & 2
\end{array}\right] \\
& (\operatorname{adj} A)^{T}=\left[\begin{array}{cc}
5 & -1 \\
3 & 2
\end{array}\right] \quad \ldots \ldots \tag{2}
\end{align*}
$$

From (1) and (2), $\operatorname{adj}\left(A^{T}\right)=(\operatorname{adj} A)^{T}$
7. If $A=\left[\begin{array}{cc}2 & -3 \\ 4 & 6\end{array}\right]$, verify that
$(\operatorname{adj} A)^{-1}=\operatorname{adj}\left(A^{-1}\right)$
$A=\left[\begin{array}{cc}2 & -3 \\ 4 & 6\end{array}\right]$,
$|A|=12+12=24 \neq 0$
$\therefore A^{-1}$ exists

$$
\operatorname{adj} A=\left[\begin{array}{cc}
6 & 3 \\
-4 & 2
\end{array}\right]
$$

$|\operatorname{adj} A|=12+12=24$
$\operatorname{adj}(\operatorname{adj} A)=\left[\begin{array}{cc}2 & -3 \\ 4 & 6\end{array}\right]$
$(\operatorname{adj} A)^{-1}=\frac{1}{|\operatorname{adj} A|} \operatorname{adj}(\operatorname{adj} A)$
$(\operatorname{adj} A)^{-1}=\frac{1}{24}\left[\begin{array}{cc}2 & -3 \\ 4 & 6\end{array}\right]$
$A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
$A^{-1}=\frac{1}{24}\left[\begin{array}{cc}6 & 3 \\ -4 & 2\end{array}\right]$
$\operatorname{adj}\left(A^{-1}\right)=\frac{1}{24}\left[\begin{array}{cc}2 & -3 \\ 4 & 6\end{array}\right]$
From (1) and (2), we get

$$
(\operatorname{adj} A)^{-1}=\operatorname{adj}\left(A^{-1}\right)
$$

8. Solve the following system of linear equations by matrix inversion method

$$
a x+b y=a, \quad a y-b x=b
$$

The matrix form is $A X=B$, where $A=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right), \quad X=\binom{x}{y}, B=\binom{a}{b}$ $|A|=a^{2}+b^{2} \neq 0 \quad \therefore A^{-1}$ exists $\operatorname{adj} A=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{a^{2}+b^{2}}\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

$$
A X=B \Rightarrow X=A^{-1} B
$$

$$
=\frac{1}{a^{2}+b^{2}}\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)\binom{a}{b}
$$

$$
=\frac{1}{a^{2}+b^{2}}\binom{a^{2}-b^{2}}{a b+a b}
$$

$$
\binom{x}{y}=\binom{\frac{a^{2}-b^{2}}{a^{2}+b^{2}}}{\frac{2 a b}{a^{2}+b^{2}}}
$$

The solution is $x=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}, y=\frac{2 a b}{a^{2}+b^{2}}$
9. Send the message "BLASTED" by using the encoding matrix $\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1 \\ 0 & -1 & 0\end{array}\right]$

As the encoded message
BLASTED = (BLA) (STE) (D)
Uncoded row matrices $=\left(\begin{array}{llllll}2 & 12 & 1\end{array}\right)\left(\begin{array}{llll}19 & 20 & 5\end{array}\right)\left(\begin{array}{lll}4 & 0 & 0\end{array}\right)$
Uncoded row matrix
Encoding matrix
Coded row matrix

$\left[\begin{array}{lll}2 & 12 & 1\end{array}\right]$	$\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1 \\ 0 & -1 & 0\end{array}\right]$	$\left.=\begin{array}{lll}{[2-12} & 24-1 & 2+12\end{array}\right]$
		$\left.=\begin{array}{ccc}{[-10} & 23 & 14\end{array}\right]$
$\left[\begin{array}{lll}19 & 20 & 5\end{array}\right]$	$\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1 \\ 0 & -1 & 0\end{array}\right]$	$=\begin{array}{lll}{[19-20} & 40-5 & 19+20\end{array}$
		$\left.=\begin{array}{ccc}{[-1} & 35 & 39\end{array}\right]$
$\left[\begin{array}{lll}4 & 0 & 0\end{array}\right]$	$\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 1 \\ 0 & -1 & 0\end{array}\right]$	$\left.=\begin{array}{lll}{[4+0+0} & 0+0+0 & 4+0+0\end{array}\right]$
		$=\left[\begin{array}{lll}4 & 0 & 4\end{array}\right]$

\therefore The encoded message is $\left[\begin{array}{lll}-10 & 23 & 14\end{array}\right]\left[\begin{array}{lll}-1 & 35 & 39\end{array}\right]\left[\begin{array}{lll}4 & 0 & 4\end{array}\right]$
10. Find the rank of the following matrix by minor method. $\left[\begin{array}{cccc}1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11\end{array}\right]$ Let $A=\left[\begin{array}{cccc}1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11\end{array}\right]$, Order of the matrix A is $3 \times 4 \Rightarrow \rho(A) \leq \min \{3,4\}=3$

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 3 \\
5 & -1 & 7
\end{array}\right| & =1(-7+3)-1(14-15)+1(-2+5) \\
& =-4+1+3=0 \\
\left|\begin{array}{ccc}
1 & 1 & 3 \\
2 & -1 & 4 \\
5 & -1 & 11
\end{array}\right| & =1(-11+4)-1(22-20)+3(-2+5) \\
& =-7-2+9=0
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
1 & 1 & 3 \\
2 & 3 & 4 \\
5 & 7 & 11
\end{array}\right|=1(33-28)-1(22-20)+3(14-15)
$$

$$
=5-2-3=0
$$

$$
\left|\begin{array}{ccc}
1 & 1 & 3 \\
-1 & 3 & 4 \\
-1 & 7 & 11
\end{array}\right|=1(33-28)-1(-11+4)+3(-7+3)
$$

$$
=5+7-12=0
$$

All the minor of order 3 vanishes, $\rho(A) \neq 3$
We find that the second order minor $\left|\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right|=-1-2=-3 \neq 0 \quad \rho(A)=2$
11. Find the inverse using by Gauss - Jordan Method: $\left[\begin{array}{ccc}1 & 3 & 0 \\ -2 & 3 & 1 \\ 0 & 1 & 1\end{array}\right]$

Let $A=\left[\begin{array}{ccc}1 & 3 & 0 \\ -2 & 3 & 1 \\ 0 & 1 & 1\end{array}\right]$
Applying Gauss Jordan method, we get $\left[A \mid I_{3}\right]=\left(\begin{array}{ccc|ccc}1 & 3 & 0 & 1 & 0 & 0 \\ -2 & 3 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right)$

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{lll|lll}
1 & 3 & 0 & 1 & 0 & 0 \\
0 & 9 & 1 & 2 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) R_{2} \rightarrow R_{2}+2 R_{1} \\
& \rightarrow\left(\begin{array}{lll|lll}
1 & 3 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 9 & 1 & 2 & 1 & 0
\end{array}\right) R_{2} \leftrightarrow R_{3} \\
& \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & -3 & 1 & 0 & -3 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & -8 & 2 & 1 & -9
\end{array}\right) \begin{array}{l}
R_{1} \rightarrow R_{1}-3 R_{2} \\
R_{3} \rightarrow R_{3}-9 R_{2}
\end{array} \\
& \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & -3 & 1 & 0 & -3 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & -\frac{1}{4} & -\frac{1}{8} & \frac{9}{8}
\end{array}\right) R_{3} \rightarrow-\frac{1}{8} R_{3} \\
& \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{4} & -\frac{3}{8} & \frac{3}{8} \\
0 & 1 & 0 & \frac{1}{4} & \frac{1}{8} & -\frac{1}{8} \\
0 & 0 & 1 & \left.\begin{array}{c}
4 \\
\hline
\end{array}\right) & \begin{array}{c}
\frac{1}{4} \\
R_{1} \rightarrow R_{1}+3 R_{3} \\
R_{2} \rightarrow R_{2}-R_{3}
\end{array} & \frac{9}{8}
\end{array}\right) \quad \Rightarrow A^{-1}=\left(\begin{array}{ccc}
\frac{1}{4} & -\frac{3}{8} & \frac{3}{8} \\
\frac{1}{4} & \frac{1}{8} & -\frac{1}{8} \\
-\frac{1}{4} & -\frac{1}{8} & \frac{9}{8}
\end{array}\right) \\
& A^{-1}=\frac{1}{8}\left(\begin{array}{ccc}
2 & -3 & 3 \\
2 & 1 & -1 \\
-2 & -1 & 9
\end{array}\right)
\end{aligned}
$$

12. Solve the following system of linear equation by Cramer's rule method

$$
\begin{aligned}
& 2 y=2+4 x+9 z, y=\frac{1}{4}[5-z-3 x], x-8=3 y-2 z \\
& 2 y=2+4 x+9 z \quad y=\frac{1}{4}[5-z-3 x] \\
& \Rightarrow-4 x+2 y-9 z=2 \quad \Rightarrow 4 y=5-z-3 x \\
& \Rightarrow 3 x+4 y+z=5 \\
& x-8=3 y-2 z \\
& \Rightarrow x-3 y+2 z=8
\end{aligned}
$$

Thus, the given system is,

$$
\begin{aligned}
& -4 x+2 y-9 z=2 \\
& 3 x+4 y+z=5 \\
& x-3 y+2 z=8 \\
& \Delta=\left|\begin{array}{ccc}
-4 & 2 & -9 \\
3 & 4 & 1 \\
1 & -3 & 2
\end{array}\right|
\end{aligned} \begin{aligned}
& =-4(8+3)-2(6-1)-9(-9-4) \\
& =-4(11)-2(5)-9(-13) \\
\Delta & =-44-10+117=63
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{1}=\left|\begin{array}{ccc}
2 & 2 & -9 \\
5 & 4 & 1 \\
8 & -3 & 2
\end{array}\right| & =2(8+3)-2(10-8)-9(-15-32) \\
& =22-4+423 \\
\Delta_{1} & =441 \\
\Delta_{2}=\left|\begin{array}{ccc}
-4 & 2 & -9 \\
3 & 5 & 1 \\
1 & 8 & 2
\end{array}\right| & =-4(10-8)-2(6-1)-9(24-5) \\
& =-8-10-171 \\
\Delta_{2} & =-189 \\
\Delta_{3}=\left|\begin{array}{ccc}
-4 & 2 & 2 \\
3 & 4 & 5 \\
1 & -3 & 8
\end{array}\right| & =-4(32+15)-2(24-5)+2(-9-4) \\
& =-4(47)-2(19)+2(-13) \\
& =-188-38-26 \\
\Delta_{3} & =-252
\end{aligned}
$$

By Cramer's rule,

$$
\begin{aligned}
& x=\frac{\Delta_{1}}{\Delta}=\frac{441}{63}=7 \\
& y=\frac{\Delta_{2}}{\Delta}=-\frac{189}{63}=-3 \\
& z=\frac{\Delta_{3}}{\Delta}=-\frac{252}{63}=-4
\end{aligned}
$$

The solution is $x=7, y=-3, z=-4$
13. Examine the consistency of the following system of equations. If it is consistent then solve them $x+4 y-2 z=3, \quad 3 x+y+5 z=7, \quad 2 x+3 y+z=5$

The number of unknowns $=3$

$$
A X=B, \text { where }
$$

$$
A=\left[\begin{array}{ccc}
1 & 4 & -2 \\
3 & 1 & 5 \\
2 & 3 & 1
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad B=\left[\begin{array}{l}
3 \\
7 \\
5
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
& {[A \mid B]=\left[\begin{array}{ccc|c}
1 & 4 & -2 & 3 \\
3 & 1 & 5 & 7 \\
2 & 3 & 1 & 5
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 4 & -2 & 3 \\
0 & -11 & 11 & -2 \\
0 & -5 & 5 & -1
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left[\begin{array}{ccc|c}
1 & 4 & -2 & 3 \\
0 & -1 & 1 & -\frac{2}{11} \\
0 & -1 & 1 & -\frac{1}{5}
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow \frac{1}{11} R_{2} \\
R_{3} \rightarrow \frac{1}{5} R_{3}
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 4 & -2 & 3 \\
0 & -1 & 1 & -\frac{2}{11} \\
0 & 0 & 0 & -\frac{1}{55}
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-R_{2}
\end{aligned}
$$

The last equivalent matrix is in row echelon form. $\rho(A)=2, \rho([A \mid B])=3$

Since $\rho(A) \neq \rho([A \mid B])$, the given system is inconsistent and has no solution.

5 Marks

1. Examine the consistency of the system of equations $4 x+3 y+6 z=25, x+5 y+7 z=13$,
$2 x+9 y+z=1$. If it is consistent then solve.

$$
4 x+3 y+6 z=25, x+5 y+7 z=13,2 x+9 y+z=1
$$

$$
A=\left[\begin{array}{lll}
4 & 3 & 6 \\
1 & 5 & 7 \\
2 & 9 & 1
\end{array}\right], B=\left[\begin{array}{c}
25 \\
13 \\
1
\end{array}\right], X=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]
$$

$$
[A \mid B]=\left[\begin{array}{cccc}
4 & 3 & 6 & 25 \\
1 & 5 & 7 & 13 \\
2 & 9 & 1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
1 & 5 & 7 & 13 \\
4 & 3 & 6 & 25 \\
2 & 9 & 1 & 1
\end{array}\right] R_{1} \leftrightarrow R_{2}
$$

$$
=\left[\begin{array}{cccc}
1 & 5 & 7 & 13 \\
0 & -17 & -22 & 27 \\
0 & -1 & -13 & 25
\end{array}\right] \begin{aligned}
& R_{2} \rightarrow-R_{2} \\
& R_{3} \rightarrow-R_{3}
\end{aligned}
$$

$$
=\left[\begin{array}{cccc}
1 & 5 & 7 & 13 \\
0 & 17 & 22 & 27 \\
0 & 0 & 199 & 398
\end{array}\right] R_{3} \rightarrow 17 R_{3}-R_{2}
$$

$\rho(A)=3, \rho(A / B)=3$
$\rho(A)=\rho(A / B)=3=$ No. of unknowns
The system is consistent and has unique solution

$$
\begin{align*}
x+5 y+7 z & =13 \tag{1}\\
17 y+22 z & =27 \tag{2}\\
199 z & =398 \tag{3}\\
z & =\frac{398}{199}=2
\end{align*}
$$

Sub $z=2$ in (2)

$$
\begin{aligned}
17 y+22(2) & =27 \\
17 y+44 & =27 \\
17 y & =-17 \\
y & =-1
\end{aligned}
$$

Sub $y=-1, z=2$ in (1)

$$
\begin{aligned}
x+5(-1)+7(2) & =13 \\
x-5+14 & =13 \\
x & =4
\end{aligned}
$$

Solution: $x=4, y=-1, z=2$
2. Decrypt the received message $\left[\begin{array}{lll}23 & -35 & 18\end{array}\right]\left[\begin{array}{lll}79 & -56 & 60\end{array}\right]\left[\begin{array}{lll}14 & -5 & 8\end{array}\right]$ with the encryption matrix $\left[\begin{array}{ccc}2 & -1 & 0 \\ 1 & 0 & 2 \\ 1 & -2 & 1\end{array}\right]$
Let the encoding matrix be $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ 1 & 0 & 2 \\ 1 & -2 & 1\end{array}\right]$

$$
|A|=2[0+4]+1[1-2]+0=8-1=7
$$

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
\left|\begin{array}{cc}
0 & 2 \\
-2 & 1
\end{array}\right| & -\left|\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right| & \left|\begin{array}{cc}
1 & 0 \\
1 & -2
\end{array}\right| \\
-\left|\begin{array}{cc}
-1 & 0 \\
-2 & 1
\end{array}\right| & \left|\begin{array}{cc}
2 & 0 \\
1 & 1
\end{array}\right| & -\left|\begin{array}{cc}
2 & -1 \\
1 & -2
\end{array}\right| \\
\left|\begin{array}{ll}
5 & 3 \\
1 & 2
\end{array}\right| & -\left|\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right| & \left|\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right|
\end{array}\right]^{T}
$$

$$
=\left[\begin{array}{ccc}
(0+4) & -(1-2) & (-2-0) \\
-(-1+0) & (2-0) & -(-4+1) \\
(-2-0) & -(4-0) & (0+1)
\end{array}\right]^{T}
$$

$$
=\left[\begin{array}{ccc}
4 & 1 & -2 \\
1 & 2 & 3 \\
-2 & -4 & 1
\end{array}\right]^{T}=\left[\begin{array}{ccc}
4 & 1 & -2 \\
1 & 2 & -4 \\
-2 & 3 & 1
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

$$
=\frac{1}{7}\left[\begin{array}{ccc}
4 & 1 & -2 \\
1 & 2 & -4 \\
-2 & 3 & 1
\end{array}\right]
$$

Coded row matrix Decoding matrix Decoded row matrix

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{lll}
23 & -35 & 18
\end{array}\right] \frac{1}{7}\left[\begin{array}{ccc}
4 & 1 & -2 \\
1 & 2 & -4 \\
-2 & 3 & 1
\end{array}\right]} & =\frac{1}{7}\left[\begin{array}{ll}
92-35-36 & 23-70+54
\end{array}-46+140+18\right.
\end{array}\right]\right\} \begin{aligned}
& =\frac{1}{7}\left[\begin{array}{lll}
21 & 7 & 112
\end{array}\right] \\
& =\left[\begin{array}{lll}
3 & 1 & 16
\end{array}\right]=\left[\begin{array}{lll}
C & A & P
\end{array}\right] \\
{\left[\begin{array}{lll}
79 & -56 & 60
\end{array}\right] \frac{1}{7}\left[\begin{array}{ccc}
4 & 1 & -2 \\
1 & 2 & -4 \\
-2 & 3 & 1
\end{array}\right] } & =\frac{1}{7}\left[\begin{array}{lll}
316-56-120 & 79-112+180 & -158+224+60
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{lll}
140 & 147 & 126
\end{array}\right] \\
& =\left[\begin{array}{llll}
20 & 21 & 18
\end{array}\right]=\left[\begin{array}{lll}
T & U & R
\end{array}\right] \\
{\left[\begin{array}{lll}
14 & -5 & 8
\end{array}\right] \frac{1}{7}\left[\begin{array}{ccc}
4 & 1 & -2 \\
1 & 2 & -4 \\
-2 & 3 & 1
\end{array}\right] } & =\frac{1}{7}\left[\begin{array}{llll}
56-5-16 & 14-10+24 & -28+20+8
\end{array}\right] \\
& =\frac{1}{7}\left[\begin{array}{lll}
35 & 28 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
5 & 4 & 0
\end{array}\right]=\left[\begin{array}{lll}
E & D &
\end{array}\right]
\end{aligned}
$$

Received Message is " Captured"
3. Find the values of a, b, c if $A=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$ is orthogonal. Hence find A^{-1}

$$
A=\left[\begin{array}{ccc}
0 & 2 b & c \\
a & b & -c \\
a & -b & c
\end{array}\right],
$$

If A is orthogonal, $A A^{T}=A^{T} A=I$

$$
A A^{T}=I
$$

$$
(3)+(4) \Rightarrow 2 a^{2}=1 \Rightarrow a^{2}=\frac{1}{2}
$$

$$
\begin{equation*}
\Rightarrow \quad a= \pm \frac{1}{\sqrt{2}} \tag{5}
\end{equation*}
$$

(3) $-(4) \Rightarrow 2 b^{2}+2 c^{2}=1$ \qquad
(5) $-(2) \Rightarrow 3 c^{2}=1 \Rightarrow c^{2}=\frac{1}{3}$

$$
\Rightarrow \quad c= \pm \frac{1}{\sqrt{3}}
$$

(2) $\Rightarrow 2 b^{2}=c^{2}=\frac{1}{3} \Rightarrow b^{2}=\frac{1}{6}$

$$
\Rightarrow \quad b= \pm \frac{1}{\sqrt{6}}
$$

$$
\therefore a= \pm \frac{1}{\sqrt{2}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{3}}
$$

$$
A A^{T}=I
$$

$$
\left(A^{-1} A\right) A^{T}=A^{-1} I
$$

$$
I A^{T}=A^{-1}
$$

$$
A^{-1}=A^{T}
$$

$$
A^{-1}=\left[\begin{array}{ccc}
0 & a & a \\
2 b & b & -b \\
c & -c & c
\end{array}\right]= \pm\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

$$
A^{-1}= \pm \sqrt{6}\left[\begin{array}{ccc}
0 & \sqrt{3} & \sqrt{3} \\
2 & 1 & -1 \\
\sqrt{2} & -\sqrt{2} & \sqrt{2}
\end{array}\right]
$$

$$
\begin{align*}
& {\left[\begin{array}{ccc}
0 & 2 b & c \\
a & b & -c \\
a & -b & c
\end{array}\right]\left[\begin{array}{ccc}
0 & a & a \\
2 b & b & -b \\
c & -c & c
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
0+4 b^{2}+c^{2} & 0+2 b^{2}-c^{2} & 0-2 b^{2}+c^{2} \\
0+2 b^{2}-c^{2} & a^{2}+b^{2}+c^{2} & a^{2}-b^{2}-c^{2} \\
0-2 b^{2}+c^{2} & a^{2}-b^{2}-c^{2} & a^{2}+b^{2}+c^{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& 4 b^{2}+c^{2}=1 \tag{1}\\
& 2 b^{2}-c^{2}=0 \tag{2}\\
& a^{2}+b^{2}+c^{2}=1 \tag{3}\\
& a^{2}-b^{2}-c^{2}=0 \tag{4}
\end{align*}
$$

4. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹ 60 . The cost of 2 kg onion, 4 kg wheat and 6 kg rice is ₹ 90 . The cost of 6 kg onion 2 kg wheat and 3 kg rice is ₹ 70 . Find the cost of each item per kg by matrix inversion method.
Let the cost of 1 kg onion $=x ; 1 \mathrm{~kg}$ wheat $=y ; 1 \mathrm{~kg}$ rice $=z$
According to the given information, we have

$$
\begin{aligned}
& 4 x+3 y+2 z=60 \\
& 2 x+4 y+6 z=90 \\
& 6 x+2 y+3 z=70
\end{aligned}
$$

Matrix form is $A X=B$, where

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad B=\left[\begin{array}{l}
60 \\
90 \\
70
\end{array}\right] \\
& |A|=4[12-12]-3[6-36]+2[4-24]=0+90-40=50 \\
& |A| \neq 0 \quad \therefore A^{-1} \text { exists. } \\
& \operatorname{adj} A=\left[\begin{array}{ccc}
(12-12) & -(6-36) & (4-24) \\
-(9-4) & (12-12) & -(8-18) \\
(18-8) & -(24-4) & (16-6)
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
0 & 30 & -20 \\
-5 & 0 & 10 \\
10 & -20 & 10
\end{array}\right]^{T}=\left[\begin{array}{ccc}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10
\end{array}\right] \\
& \operatorname{adj} A=5\left[\begin{array}{ccc}
0 & -1 & 2 \\
6 & 0 & -4 \\
-4 & 2 & 2
\end{array}\right] \\
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{50} \times 5\left[\begin{array}{ccc}
0 & -1 & 2 \\
6 & 0 & -4 \\
-4 & 2 & 2
\end{array}\right] \\
& A^{-1}=\frac{1}{10}\left[\begin{array}{ccc}
0 & -1 & 2 \\
6 & 0 & -4 \\
-4 & 2 & 2
\end{array}\right] \\
& A X=B \\
& X=A^{-1} B=\frac{1}{10}\left[\begin{array}{ccc}
0 & -1 & 2 \\
6 & 0 & -4 \\
-4 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
60 \\
90 \\
70
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -1 & 2 \\
6 & 0 & -4 \\
-4 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
6 \\
9 \\
7
\end{array}\right] \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0-9+14 \\
36+0-28 \\
-24+18+14
\end{array}\right]=\left[\begin{array}{l}
5 \\
8 \\
8
\end{array}\right]} \\
& x=5, y=8, z=8 \\
& \text { The cost of } 1 \mathrm{~kg} \text { onion }=₹ 5 \\
& \text { The cost of } 1 \mathrm{~kg} \text { wheat }=₹ 8 \\
& \text { The cost of } 1 \mathrm{~kg} \text { rice }=₹ 8
\end{aligned}
$$

5. There were 240 persons in a picnic. There were 20 more men than women and 20 more adults than children. How many men and women and children were there in the picnic?
Let the number of men $=x$; The number of women $=y$; The number of children $=z$
\therefore Number of adults $=x+y$
According to the conditions, we get,

$$
\left.\begin{array}{l}
x+y+z=240 \\
x-y=20 \\
x+y-z=20
\end{array}\right] \begin{gathered}
x=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 1 & -1
\end{array}\right|=1(1-0)-1(-1-0)+1(1+1)=1+1+2=4 \\
\Delta_{1}=\left|\begin{array}{ccc}
240 & 1 & 1 \\
20 & -1 & 0 \\
20 & 1 & -1
\end{array}\right|=240(1-0)-1(-20-0)+1(20+20)=240+20+40=300 \\
\Delta_{2}=\left|\begin{array}{lll}
1 & 240 & 1 \\
1 & 20 & 0 \\
1 & 20 & -1
\end{array}\right|=1(-20-0)-240(-1-0)+1(20-20)=-20+240+0=220 \\
\Delta_{3}=\left|\begin{array}{ccc}
1 & 1 & 240 \\
1 & -1 & 20 \\
1 & 1 & 20
\end{array}\right|=1(-20-20)-1(20-20)+240(1+1)=-40-0+480=440 \\
\text { By Cramer's rule, } \begin{aligned}
x & =\frac{\Delta_{1}}{\Delta}=\frac{300}{4}=75 \\
y & =\frac{\Delta_{2}}{\Delta}=\frac{220}{4}=55 \\
z & =\frac{\Delta_{3}}{\Delta}=\frac{440}{4}=110
\end{aligned}
\end{gathered}
$$

\therefore In the picnic, there were 75 men, 55 women, and 110 children.
6. A, B and C work in telemarketers. Between the three of them, they can process 570 orders in a day. A process 60 more orders in one day than B. C process 30 less orders in one day than A. How many orders in one day does each of these individuals process?

Let the number of orders processed by $A=x$
The number of orders processed by $B=y$
The number of orders processed by $C=z$
Given: Total orders processed in a day by all the three $=570$

$$
x+y+z=570
$$

Given: Number of orders processed by A in one day

$$
\begin{aligned}
& =\{\text { No. of orders processed by } B \text { in one day }\}+60 \\
x & =y+60 \\
x-y & =60
\end{aligned}
$$

Given: Number of orders processed by C in one day

$$
\begin{aligned}
& =\{\text { No. of orders processed by } A \text { in one day }\}-30 \\
z & =x-30 \\
x-z & =30
\end{aligned}
$$

The system of linear equations: $x+y+z=570$

$$
\begin{aligned}
& x-y=60 \\
& x-z=30
\end{aligned}
$$

The augmented matrix is $(A \mid B)=\left(\begin{array}{ccc|c}1 & 1 & 1 & 570 \\ 1 & -1 & 0 & 60 \\ 1 & 0 & -1 & 30\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & 570 \\
0 & -2 & -1 & -510 \\
0 & -1 & -2 & -540
\end{array}\right) \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1} \\
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 570 \\
0 & 2 & 1 & 510 \\
0 & 1 & 2 & 540
\end{array}\right) R_{2} \rightarrow-R_{2} \\
R_{3} \rightarrow-R_{3}
\end{array} \\
& \left(\begin{array}{lll|l}
1 & 1 & 1 & 570 \\
0 & 2 & 1 & 510 \\
0 & 0 & 3 & 570
\end{array}\right)_{R_{3} \rightarrow 2 R_{3}-R_{2}}
\end{aligned}
$$

Writing the equivalent system of equation from the row-echelon matrix, we get

$$
\begin{array}{r}
x+y+z=570 \\
2 y+z=510 \\
3 z=570 \tag{3}
\end{array}
$$

(3) $\Rightarrow 3 z=570$

$$
z=\frac{570}{3}=190
$$

(2) $\Rightarrow 2 y+190=510$

$$
\begin{aligned}
2 y & =510-190=320 \\
y & =\frac{320}{2}=160
\end{aligned}
$$

(1) $\Rightarrow x+160+190=570$

$$
\begin{aligned}
x+350 & =570 \\
x & =570-350=220
\end{aligned}
$$

In one day, The number of orders processed by $A=220$
The number of orders processed by $B=160$
The number of orders processed by $C=190$
7. Find a, b, c when $f(x)=a x^{2}+b x+c, f(0)=6, f(2)=11$ and $f(-3)=6$. Determine the quadratic function $f(x)$ and find its value when $x=1$

$$
\begin{aligned}
& f(x)=a x^{2}+b x+c \\
& f(0)=a\left(0^{2}\right)+b(0)+c \\
& c=6 \\
& f(2)=a\left(2^{2}\right)+b(2)+c=11 \\
& 4 a+2 b+c=11 \\
& f(-3)=a(-3)^{2}+b(-3)+c=6 \\
& 9 a-3 b+c=6
\end{aligned}
$$

The augmented matrix is
$(A \mid B)=\left(\begin{array}{ccc|c}0 & 0 & 1 & 6 \\ 4 & 2 & 1 & 11 \\ 9 & -3 & 1 & 6\end{array}\right)$

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{ccc|c}
0 & 0 & 1 & 6 \\
4 & 2 & 1 & 11 \\
0 & -30 & -5 & -75
\end{array}\right)_{R_{3}} \rightarrow 4 R_{3}-9 R_{2} \\
& \rightarrow\left(\begin{array}{ccc|c}
4 & 2 & 1 & 11 \\
0 & 0 & 1 & 6 \\
0 & 6 & 1 & 15
\end{array}\right)_{R_{3}} \rightarrow \frac{1}{-5} R_{3} \\
& \rightarrow\left(\begin{array}{ccc|c}
4 & 2 & 1 & 11 \\
0 & 6 & 1 & 15 \\
0 & 0 & 1 & 6
\end{array}\right)_{R_{2}} \leftrightarrow R_{3}
\end{aligned}
$$

Writing the equivalent system of equations from the row-echelon matrix, we get,

$$
\begin{align*}
4 a+2 b+c & =11 \tag{1}\\
6 b+c & =15 \tag{2}\\
c & =6 \tag{3}
\end{align*}
$$

$$
\begin{aligned}
(2) \Rightarrow 6 b+6 & =15 \\
6 b & =15-6 \\
b & =\frac{9}{6}=\frac{3}{2}
\end{aligned}
$$

$$
\begin{array}{r}
(1) \Rightarrow 4 a+2\left(\frac{3}{2}\right)+6=11 \\
4 a+9=11
\end{array}
$$

$$
4 a=11-9=2
$$

$$
a=\frac{1}{2}
$$

The required quadratic equation is $f(x)=$ $\frac{1}{2} x^{2}+\frac{3}{2} x+6$

$$
\text { When } x=1 \text {, }
$$

$$
\begin{aligned}
f(1) & =\frac{1}{2}(1)^{2}+\frac{3}{2}(1)+6 \\
& =\frac{1}{2}+\frac{3}{2}+6 \\
f(1) & =8
\end{aligned}
$$

8. Investigate for what values of m and n the equations $x+y+2 z=2,2 x-y+3 z=2$,
$5 \boldsymbol{x}-\boldsymbol{y}+\boldsymbol{m z}=\boldsymbol{n}$ have (i) no solution (ii) unique solution (iii) infinite number of solutions.
The matrix form of the given system of equations is $A X=B$, where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & -1 & 3 \\
5 & -1 & m
\end{array}\right], \quad X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad B=\left[\begin{array}{l}
2 \\
2 \\
n
\end{array}\right]
$$

The augmented matrix is

$$
\begin{aligned}
{[A \mid B] } & =\left[\begin{array}{ccc|c}
1 & 1 & 2 & 2 \\
2 & -1 & 3 & 2 \\
5 & -1 & m & n
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 2 & 2 \\
0 & -3 & -1 & -2 \\
0 & -6 & m-10 & n-10
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-5 R_{1}
\end{array} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 2 & 2 \\
0 & -3 & -1 & -2 \\
0 & 0 & m-8 & n-6
\end{array}\right] R_{3} \rightarrow R_{3}-2 R_{2}
\end{aligned}
$$

(i) If $m=8$ and $n \neq 6$,
$\rho(A)=2$ and $\rho([A \mid B])=3$
Since $\rho(A) \neq \rho([A \mid B])$, the given system has no solution.
(ii) If $m \neq 8, n \in R$ $\rho(A)=\rho([A \mid B])=3=$ No. of unknowns.
\therefore The given system has unique solution.
(iii) If $m=8$ and $n=6$,

$$
\rho(A)=\rho([A \mid B])=2<\text { no. of unknowns. }
$$

\therefore The given system has infinite number of solutions.
(i) The given system has no solution for $m=8$ and $n \neq 6$
(ii) The given system has unique solution for $m \neq 8$ and $n \in R$
(iii) The given system has infinite number of solutions for $m=8$ and $n=6$
9. By using Gaussian elimination method balance the chemical reaction equation.
$\mathrm{BF}_{3}+\mathrm{NaH} \rightarrow \mathrm{B}_{2} \mathrm{H}_{6}+6 \mathrm{NaF}$
We are searching for positive integers x_{1}, x_{2}, x_{3} and x_{4} such that

$$
\begin{equation*}
x_{1} B F_{3}+x_{2} \mathrm{NaH} \rightarrow x_{3} B_{2} H_{6}+6 x_{4} \mathrm{NaF} \tag{1}
\end{equation*}
$$

The number of Boron (B) atoms on the left-hand side of (1) should be equal to the number of Boron atoms on the right-hand side of (1).

$$
\begin{equation*}
x_{1}=2 x_{3} \Rightarrow x_{1}-2 x_{3}=0 \tag{2}
\end{equation*}
$$

Similarly, considering Fluorine, Sodium and Hydrogen atoms, we get respectively,

$$
\begin{align*}
& 3 x_{1}=6 x_{4} \Rightarrow x_{1}=2 x_{4} \Rightarrow x_{1}-2 x_{4}=0 \tag{3}\\
& x_{2}=6 x_{4} \Rightarrow x_{2}-6 x_{4}=0 \tag{4}\\
& x_{2}=6 x_{3} \Rightarrow x_{2}-6 x_{3}=0 \tag{5}
\end{align*}
$$

Equations (2), (3), (4) and (5) constitute a homogeneous system of linear equation in four unknowns.

The augmented

$$
\begin{aligned}
& {[A \mid B]=\left[\begin{array}{cccc|c}
1 & 0 & -2 & 0 & 0 \\
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & -6 & 0 \\
0 & 1 & -6 & 0 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{cccc|c}
1 & 0 & -2 & 0 & 0 \\
0 & 0 & 2 & -2 & 0 \\
0 & 1 & 0 & -6 & 0 \\
0 & 0 & -6 & 6 & 0
\end{array}\right] R_{2} \rightarrow R_{2}-R_{1} \\
& \rightarrow\left[\begin{array}{cccc|c}
1 & 0 & -2 & 0 & 0 \\
0 & 1 & 0 & -6 & 0 \\
0 & 0 & 2 & -2 & 0 \\
0 & 0 & -6 & 6 & 0
\end{array}\right] R_{4}-R_{3} \leftrightarrow R_{3} \\
& \rightarrow\left[\begin{array}{cccc|c}
1 & 0 & -2 & 0 & 0 \\
0 & 1 & 0 & -6 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 & 0
\end{array}\right] \begin{array}{l}
R_{3} \rightarrow \frac{1}{2} R_{3} \\
R_{4} \rightarrow \frac{1}{6} R_{4} \\
0
\end{array} A_{1} \\
& 0
\end{aligned} 0
$$

$\therefore \rho(A)=\rho([A \mid B])=3<4=$ Number of unknowns.
\therefore The system is consistent and has infinite number of solutions.
Equivalent system of equations from the row-echelon matrix is

$$
\begin{align*}
& x_{1}-2 x_{3}=0 \tag{6}\\
& x_{2}-6 x_{4}=0 \tag{7}\\
& x_{3}-x_{4}=0 \tag{8}
\end{align*}
$$

Let $x_{4}=t, t \in R-\{0\}$
(8) $\Rightarrow x_{3}-t=0 \Rightarrow x_{3}=t$
(7) $\Rightarrow x_{2}-6 t=0 \Rightarrow x_{2}=6 t$
(8) $\Rightarrow x_{1}-2 t=0 \Rightarrow x_{1}=2 t$
$\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2 t, 6 t, t, t)$
Let us choose $t=1$
Then, we get $x_{1}=2(1)=2$,
$x_{2}=6(1)=6, x_{3}=1$ and $x_{4}=1$
So, the balanced equation is

$$
2 \mathrm{BF}_{3}+6 \mathrm{NaH} \rightarrow \mathrm{~B}_{2} \mathrm{H}_{6}+6 \mathrm{NaH}
$$

Important Example Questions:
2 Marks: Eg.1.11 (PTA-1)
3 Marks: Eg.1.8 (Mar-20)
5 Marks: Eg.1.34 (PTA-2), Eg.1.21 (PTA-6), Eg.1.32 (Mar-20)

For Orders Please Contact Our District Co-Ordinators

Ariyalur: 7094441952, 9843427724
Chennai: 7094441953, 7868911969
Coimbatore: 7397774501, 8973711777
Cuddalore: 7397774502, 9003557799
Dharmapuri: 7397774503, 9787144519
Dindigul: 7094441954, 9150078022
Erode: 7397774504, 9788831237
Kanchipuram: 7397774505, 9600526295
Kanniyakumari:7397774506, 9488582088
Karur: 7094441955, 9842964646
Krishnagiri:7094441956, 9994394610
Madurai: 7094441957, 9843349892
Nagapattinam: 7094441966, 7598868760
Namakkal: 7094441958, 7094807585
Nilgiris: 9787609090,9787201010
Perambalur: 7397774509, 9003557799
Pudukottai: 7397774510, 9787609090

Ramanathapuram: 7094441959, 9150854043
Salem: 7397774511, 9952499928
Sivaganga: 7397774512, 7639682894
Thanjavur: 7094441960, 9787609090
Theni: 7397774513, 9092794793
Thoothukudi:7397774507, 7598011962
Thiruvarur:7094441962, 7598868760
Tirunelveli: 7397774515, 9500806359
Tiruchirappalli: 9626053030, 9787609090
Thottiam: 9344322007, 8667686395
Thiruvallur: 7397774514, 8667604216
Tiruppur: 73977745249788776767
Tiruvannamalai: 7094441963, 9952782495
Vellore: 7094441964, 9994311090
Thirupathur:7094441961, 9786315453
Villuppuram: 7094441965, 9943153202
Virudhunagar: 7397774516, 8189844465
(OR) Please call 9787609090 or 9787201010 or 04312703031

You can buy our products from our Retailers (Book Shops)

Chennai: Paris-Bunder Street-MK Stores, Kings, MSK, Limra books, FA Stores Coimbatore: Majestic book House, Cheran Book House, Raja Ganapathi Books, Radhamani books Cuddalore: Bell book house, Emborium book shop Ariyalur: Tamilkalam Books (Sendhurai Road) Dharmapuri: Sri Krishna School needs Dindigul: Ayyanar Books (bus stand), Jai Books (no.28, Solai Hall Road). KV Narayana Iyyar, JK Books Palani-Vinoth, Elumalayan Books Erode: Dhana, Senthil, Palaniyappa, Selvam Books, Amirthalingam Book House Pallipalayam-Amman Sanjeevi Kanchipuram: VBC Books Kanniyakumari: Nagarkoil - New India Book House Karur: Udhayam Solar Systems, Krishna Traders, SPN Note books, Vani Books Krishnagiri: Sri Ramana Book House, Vijaya Books, Madurai: Pudumandapam: Mano, Jayam, Bharath Book House Nagapattinam: Vinayaga papers, Mayiladuthurai: Balaji Seerkazhi-Semmalar Vedharanyam: Nandhini books Namakkal: Saravana Books(Bus stand), RasipuramSakthi, Babu Books Tiruchengode-Chola Books. Thottiam-Arun, Janani books Nilgiris: Kothagiri-Bharani traders Perambalur: Chandra Stores Pudukottai:Tamilnadu paper mart Ramanathapuram: Aruna Stores. Salem: AKC, Rajaganapthi, Vignesh, Saraswathi, Pattu, Palaniappa Attur-Saraswathi Books Sivaganga: New Ayyanar Books (thondi road) Thanjavur:LKR, Murugan, Pattukottai-Arasu, Arasi, Vinayaga Balaji Books, Kumbakonam- Balaji, Markandeya Books Theni: Maya books Thoothukudi: Eagle Books, Sri Durga Stores, Thiruvarur: Anand papers, Enbajothy Vilas, Manonmani Books, Mannargudi-Balaji, Thiruthuraipoondi-Jolly, Nannilam-Mullai, Tirunelveli: Eagle Books, Sri Shyamala Puthaga Angadi, Tenkasi: Maheswari Books Tiruchirappalli: Rasi, Sumathi, Murugan Books, P.R.Sons, Kumaran, Viswas, Market-Mani Puthaga Nilyam, Raghavendra, Gayathri, Manapparai: Jothies Thiruvallur: Gumidipoondi-Jaya books Tiruppur: Chola book house, Tiruvannamalai: APM Stores, Saraswathi Book Stall, Vellore:Vellore Books, Thirupattur: Sri Sai Book Shop, Villuppuram: Sabarinathan Books, Book Park, Kallakurichi-Sri Kirubha Stationary, Virudhunagar: Sethu Books. Pondicherry: Balaji Books

For updated version of this list Visit us: www.waytosuccess.org Mail us: way2s100@gmail.com

