4. Geometry

Introduction for Exercise 4.1

Concept corner

$>$ Two figures are said to be similar if every aspect of one figure is proportional to other figure.
Congruency and similarity of triangles
$>$ Congruency is a particular case of similarity. In both the cases, three angles of one triangle are equal to the three corresponding angles of the other triangle.
$>$ But in congruent triangles, the corresponding sides are equal. While in similar triangles, the corresponding sides are proportional.
$>$ The triangles $A B C$ and $P Q R$ are similar can be written as $\triangle A B C \sim \triangle P Q R$

Congruent triangles	Similar triangles
$\triangle A B C \cong \triangle P Q R$	$\angle A B C \sim \triangle P Q R$
$\angle A=\angle P, \angle B=\angle Q, \angle C=\angle R$	$A B \neq P Q, \angle B=\angle Q, \angle C=\angle R$
$A B=P Q, B C=Q R, C A=R P$	$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}>1$ or <1
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}=1$	

Criteria of Similarity

 similarity| |
| :--- |
| SAS Criterion of | similarity similarity

AA Criterion of If two angles of one triangle are respectively

| including them are proportional then the |
| :--- | :--- |
| two triangles are similar. |

SSS Criterion of \quad If three sides of a triangle are proportional to the three corresponding sides of another triangle, then the two triangles are similar.

So, if $\angle A=\angle P=1$ and $\angle B=\angle Q=2$ then $\triangle A B C \sim \triangle P Q R$ If one angle of a triangle is equal to one angle of another triangle and if the sides including them are proportional then the two triangles are similar.

Thus, if $\angle A=\angle P=1$ and $\frac{A B}{P Q}=\frac{A C}{P R}$ then $\triangle A B C \sim \triangle P Q R$ the two triangles are similar, because the third angle in both triangles must be equal. Therefore, AA similarity criterion is same as the AAA similarity criterion

So if, $\frac{A B}{P Q}=\frac{A C}{P R}=\frac{B C}{Q R}$ then

$$
\triangle A B C \sim \triangle P Q R
$$

Definition:

1. Two triangles are said to be similar if their corresponding sides are proportional.
2. The triangles are equiangular if the corresponding angles are equal.

Note:

$>$ If we change exactly one of the four given lengths, then we can make these triangles are similar
$>$ A pair of equiangular triangles are similar.
$>$ If two triangles are similar, then they are equiangular.

Some useful results on Similar Triangles:

| 1 | A perpendicular line drawn from the vertex of a right |
| :--- | :--- | angled triangle divides the triangle into two triangles similar to each other and also to original triangle.

$$
\triangle A D B \sim \triangle B D C, \quad \triangle A B C \sim \triangle A D B, \quad \triangle A B C \sim \triangle B D C
$$

2 If two triangles are similar, then the ratio of the corresponding sides are equal to the ratio of their corresponding altitudes.
If $\triangle A B C \sim \triangle P Q R$ then
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}=\frac{A D}{P S}=\frac{B E}{Q T}=\frac{C F}{R U}$

3 If two triangles are similar, then the ratio of the corresponding sides are equal to the ratio of the corresponding perimeters.
$\triangle A B C \sim \triangle D E F$ then

$$
\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}=\frac{A B+B C+C A}{D E+E F+F D}
$$

$4 \quad$ The ratio of the area of two similar triangles are equal to the ratio of the squares of their corresponding sides
$\frac{\text { area }(\triangle A B C)}{\text { area }(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{A C^{2}}{P R^{2}}$

5 If two triangles have common vertex and their bases are on the same straight line, the ratio between their areas is equal to the ratio between the length of their bases.

$$
\frac{\text { area }(\triangle A B D)}{\text { area }(\triangle B D C)}=\frac{A D}{D C}
$$

Introduction for Exercise 4.2

Concept corner

Theorem 1: Basic Proportionality Theorem (BPT) or Thales theorem

Statement: A straight line drawn parallel to a side of triangle intersecting the other two sides, divides the sides in the same ratio.
Proof:
Given: In $\triangle A B C, D$ is a point on $A B$ and E is a point on $A C$.
To prove: $\frac{A D}{D B}=\frac{A E}{E C}$

Construction: Draw a line $D E \| B C$

No.	Statement	Reason	
1.	$\angle A B C=\angle A D E=\angle 1$	Corresponding angles are equal because $D E \\| B C$	
2.	$\angle A C B=\angle A E D=\angle 2$	Corresponding angles are equal because $D E \\| B C$	
3.	$\angle D A E=\angle B A C=\angle 3$	Both triangles have a common angle	
4.	$\begin{aligned} & \triangle A B C \sim \triangle A D E \\ & \frac{A B}{A D}=\frac{A C}{A E} \\ & \frac{A D+D B}{A D}=\frac{A E+E C}{A E} \\ & 1+\frac{D B}{A D}=1+\frac{E C}{A E} \\ & \frac{D B}{A D}=\frac{E C}{A E} \\ & \frac{A D}{D B}=\frac{A E}{E C} \\ & \hline \end{aligned}$	By AAA similarity Corresponding sides are proportional Split $A B$ and $A C$ using the points D and E On simplification Cancelling 1 on both sides Taking reciprocals	
Hence proved			

Corollary: If in $\triangle A B C$, a straight line $D E$ parallel to $B C$, intersects $A B$ at D and $A C$ at E, then
(i) $\frac{A B}{A D}=\frac{A C}{A E}$
(ii) $\frac{A B}{D B}=\frac{A C}{E C}$

Theorem 2: Converse of Basic Proportionality Theorem
Statement: If a straight line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.
Proof:
Given: In $\triangle A B C, \frac{A D}{D B}=\frac{A E}{E C}$
To prove: $D E \| B C$
Construction: Draw $B F \| D E$

Way to Success $B-10^{\text {th }}$ Maths

No.	Statement	Reason	
1.	In $\triangle A B C, B F \\| D E$	Construction	
2.	$\frac{A D}{D B}=\frac{A E}{E C} \ldots \ldots \ldots . .(1)$	Thales theorem (In $\triangle A B C$ taking D in $A B$ and in $A C$)	
3.	$\frac{A D}{E C}=\frac{A F}{F C} \ldots \ldots \ldots \ldots(2)$	Thales theorem (In $\triangle A B C$ taking F in $A C$)	
4.	$\frac{A E}{E C}=\frac{A F}{F C}$	From (1) and (2)	
	$\frac{A E}{E C}+1=\frac{A F}{F C}+1$		
$\frac{A E+E C}{E C}=\frac{A F+F C}{F C}$			
$\frac{A C}{E C}=\frac{A C}{F C}$			
$E C=F C$	Adding 1 to both sides		
Therefore, $E=F$			
Thus $D E \\| B C$	Cancelling $A C$ on both sides		

Theorem 3: Angle Bisector Theorem

Statement: The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle. PTA-5 Proof:

Given : In $\triangle A B C, A D$ is the internal bisector

To prove: $\frac{A B}{A C}=\frac{B D}{C D}$
Construction : Draw a line through C parallel to $A B$. Extend $A D$ to meet line through C at E

No.	Statement	Reason
1.	$\angle A E C=\angle B A E=\angle 1$	Two parallel lines cut by a transversal make alternate angles equal.
2.	$\Delta A C E$ is isosceles $A C=C E \ldots \ldots(1)$	In $\triangle A C E, \angle C A E=\triangle C E A$
3.	$\triangle A B D \sim \triangle E C D$ $\frac{A B}{C E}=\frac{B D}{C D}$	By $A A$ similarity
4.	$\frac{A B}{A C}=\frac{B D}{C D}$	From (1) $A C=C E$ Hence proved.

Theorem 4: Converse of Angle Bisector Theorem

Statement: If a straight line through one vertex of a triangle divides the opposite side internally in the ratio of the other two sides, then the line bisects the angle internally at the vertex.

PTA-3, 4

Proof:

Given : $A B C$ is a triangle.
$A D$ divides $B C$ in the ratio of the sides containing the angles $\angle A$
 to meet $B C$ at D.

That is $\frac{A B}{A C}=\frac{B D}{D C}$
To prove : $A D$ bisects $\angle A \quad$ i.e. $\angle 1=\angle 2$
Construction : Draw $C E \| D A$. Extend $B A$ to meet at E.

No.	Statement	Reason	
1.	Let $\angle B A D=\angle 1$ and $\angle D A C=\angle 2$	Assumption	
2.	$\angle B A D=\angle A E C=\angle 1$	Since $D A \\| C E$ and $A C$ is transversal, corresponding angles are equal	
3.	$\angle D A C=\angle A C E=\angle 2$	Since $D A \\| C E$ and $A C$ is transversal, Alternate angles are equal	
4.	$\frac{B A}{A E}=\frac{B D}{D C} \ldots \ldots \ldots . .(2)$	In $\triangle B C E$ by thales theorem	
5.	$\frac{A B}{A C}=\frac{B D}{D C}$	From (1)	
6.	$\frac{A B}{A C}=\frac{B A}{A E}$	From (1) and (2)	
7.	$A C=A E \ldots \ldots . . .(3)$	Cancelling $A B$	
8.	$\angle 1=\angle 2$	$\Delta A C E$ is isosceles by (3)	
9.	$A D$ bisects $\angle A$	Since, $\angle 1=\angle B A D=\angle 2=\angle D A C$.	
Hence proved			

Note: If C_{1}, C_{2}, \ldots are points on the circle, then all the triangles $\Delta B A C_{1}, \Delta B A C_{2}, \ldots$ are with same base and the same vertical angle.

Introduction for Exercise 4.3

Concept corner

Theorem 5: Pythagoras Theorem

Statement: In a right angle triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.
Proof:
Given: In $\triangle A B C, \angle A=90^{\circ}$
PTA-4

To prove : $A B^{2}+A C^{2}=B C^{2}$
Construction : Draw $A D \perp B C$

No.	Statement	Reason
1.	Compare $\triangle A B C$ and $\triangle A B D$	Given $\angle B A C=90^{\circ}$ and by construction
	$\angle B$ is common	$\angle B D A=90^{\circ}$
	$\angle B A C=\angle B D A=90^{\circ}$	
	Therefore, $\triangle A B C \sim \triangle A B D$	By AA similarity
	$\frac{A B}{B D}=\frac{B C}{A B}$	
	$A B^{2}=B C \times B D \ldots(1)$	
2.	Compare $\triangle A B C$ and $\triangle A D C$	Given $\angle B A C=90^{\circ}$ and by construction
	$\angle C$ is common	$\angle C D A=90^{\circ}$
	$\angle B A C=\angle A D C=90^{\circ}$	
	Therefore, $\triangle A B C \sim \triangle A D C$	By AA similarity
	$\frac{B C}{A C}=\frac{A C}{D C}$	
	$A C^{2}=B C \times D C \ldots(2)$	

Adding (1) and (2) we get

$$
\begin{gathered}
A B^{2}+A C^{2}=B C \times B D+B C \times D C \\
=B C \times(B D+D C) \\
=B C \times B C \\
A B^{2}+A C^{2}=B C^{2}
\end{gathered}
$$

Hence the theorem is proved.

Converse of Pythagoras Theorem

Statement: If the square of the longest side of a triangle is equal to sums of squares of other two sides, then the triangle is a right angle triangle.

Note:

$>$ In a right angles triangle, the side opposite to 90° (the right angle) is called the hypotenuse.
$>$ The other two sides are called legs of the right angled triangle.
$>$ The hypotenuse will be the longest side of the triangle.

Introduction for Exercise 4.4

Concept corner

	Figure 1	Figure 2	
(i)	Straight line $P Q$ does not touch the circle.	Straight line $P Q$ touches the circle at a common point A	Straight line intersects the circle at two points A and B.
(ii)	There is no common point between the straight line and circle	$P Q$ is called the tangent to the circle at A	The line $P Q$ is called a secant of the circle
(iii)	Thus the number of point of intersection of a line and circle is zero.	Thus the number of points of intersection of a line and circle is one.	Thus the number of points of intersection of a line and circle is two

Definition: If a line touches the given circle at only one point then it is called tangent to the circle.

Theorem 6: Alternate Segment theorem

Statement: If a line touches a circle and from the point of contact a chord is drawn, the angles between the tangent and the chord are respectively equal to the angles in the corresponding alternate segments.

Proof:

Given : A circle with centre at O, tangent $A B$ touches the circle at P and $P Q$ is a \AA
 chord. S and T are two points on the circle in the opposite sides of chord $P Q$.
To prove: (i) $\angle Q P B=\angle P S Q$ and (ii) $\angle Q P A=\angle P T Q$
Construction : Draw the diameter $P O R$. Draw $Q R, Q S$ and $P S$.

No.	Statement	Reason	
1.	$\angle R P B=90^{\circ}$		
	Now, $\angle R P Q+\angle Q P B=90^{\circ}$	$\ldots(1)$	Diameter $R P$ is perpendicular to tangent
$A B$.			

3.	$\angle Q R P+\angle R P Q=90^{\circ}$	$\ldots(3)$	In a right angled triangle, sum of the two acute angles is 90°.
4.	$\angle R P Q+\angle Q P B=\angle Q R P+\angle R P Q$ $\angle Q P B=\angle Q R P$	From (1) and (3).	
5.	$\angle Q R P=\angle P S Q$	$\ldots(4)$	
6.	$\angle Q P B=\angle P S Q$	$\ldots(6)$	Angles in the same segment are equal.
7.	$\angle Q P B+\angle Q P A=180^{\circ}$	$\ldots(7)$	From (4) and (5); Hence (i) is proved.
8.	$\angle P S Q+\angle P T Q=180^{\circ}$	$\ldots(8)$	Sum of opposite angles of a cyclic quadrilateral is 180
9.	$\angle Q P B+\angle Q P A=\angle P S Q+\angle P T Q$	From (7) and (8).	
10.	$\angle Q P B+\angle Q P A=\angle Q P B+\angle P T Q$	$\angle Q P B=\angle P S Q$ from (6)	
11.	$\angle Q P A=\angle P T Q$	Hence (ii) is proved. This completes the proof.	

Definition: A cevian is a line segment that extends from one vertex of a triangle to the opposite side. In the diagram, AD is a cevian, from A.
Ceva's Theorem (without proof)

Statement: Let $A B C$ be a triangle and let D, E, F be points on lines $B C, C A$, $A B$ respectively. Then the cevians $A D, B E, C F$ are concurrent if and only if $\frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=1$ where the lengths are directed. This also works for the reciprocal of each of the ratios as the reciporcal of 1 is 1 .

Note: The cevians do not necessarily lie within the triangle, although they do in the diagram Menelaus Theorem (without proof)

Statement: A necessary and sufficient condition for points P, Q, R on the respective sides $B C, C A, A B$ (or their extension) of a triangle $A B C$ to be collinear is that $\frac{B P}{P C} \times \frac{C Q}{Q A} \times \frac{A R}{R B}=-1$ where all segments in the formula are directed segments.

Note:

$>$ Menelaus theorem can also be given as $B P \times C Q \times A R=-P C \times Q A \times R B$
$>$ If $B P$ is replaced by $P B$ (or) $C Q$ by $Q C$ (or) $A R$ by $R A$, or if any one of the six directed line segments $B P, P C, C Q, Q A, A R, R B$ is interchanged, then the product will be 1 .
$>$ Centroid is the point of concurrence of the median of a triangle.

