4. Geometry

Introduction for Exercise 4.1

Concept corner				
Two figures are said to be similar if every aspect of one figure is proportional to other figure. Congruency and similarity of triangles				
 Congruency is a particular case of similarity. In both the cases, three angles of one 				
triangle are eq	ual to the three correspon	nding angles of	the other triangle.	
But in congru	\succ But in congruent triangles, the corresponding sides are equal. While in similar			
triangles, the c	corresponding sides are p	roportional.		
The triangles A	ABC and PQR are similar	can be written a	$\Delta ABC \sim \Delta PQR$	
(Congruent triangles	Simila	r triangles	
	$\frac{A}{2}$	$ABC \sim APOR$	P 3 C $QQRR$	
$\angle A = \angle$	$P \angle B = \angle O \angle C = \angle R$	A = P R =	$\langle 0 \rangle \langle C = \langle R \rangle$	
AB = P	PQ, BC = QR, CA = RP	$AB \neq PO, BC \neq$	$OR, CA \neq RP$	
$\frac{AB}{AB} = \frac{BC}{AB}$	$\frac{C}{C} = \frac{CA}{C} = 1$	$\frac{AB}{AB} = \frac{BC}{BC} = \frac{CA}{CA} > $	1 or < 1	
PQ QR Same sl	$\begin{array}{c c} PQ & QR & RP \end{array} \qquad \qquad PQ & QR & RP \end{array}$		not camo sizo	
Critorio of Similarit		Same shape but	not same size	
AA Criterion of	y If two angles of one triangle	are respectively	P	
AA Criterion of similarity If two angles of one triangle are respe- equal to two angles of another triangle the two triangles are similar, becau third angle in both triangles must be Therefore, AA similarity criterion is s		her triangle, then lar, because the s must be equal. terion is same as	So, if $\angle A = \angle P = 1$ and	
			$\angle B = \angle Q = 2$ then	
CAC Critorian of	If one ongle of a triangle	in aqual to an	$\Delta ABC \sim \Delta PQR$	
similarity	If one angle of a triangle is equal to one angle of another triangle and if the sides including them are proportional then the two triangles are similar.			
			Thus, if $\angle A = \angle P = 1$ and $\frac{AB}{PQ} = \frac{AC}{PR}$ then $\triangle ABC \sim \triangle PQR$	
SSS Criterion of similarity	If three sides of a triangle are proportional to the three corresponding sides of another triangle, then the two triangles are similar.		A = AC = BC	
			So ii, $\frac{1}{PQ} = \frac{1}{PR} = \frac{1}{QR}$ then $\Delta ABC \sim \Delta PQR$	

www.waytosuccess.org

Definition:

- 1. Two triangles are said to be similar if their corresponding sides are proportional.
- 2. The triangles are equiangular if the corresponding angles are equal.

Note:

- If we change exactly one of the four given lengths, then we can make these triangles are similar
- > A pair of equiangular triangles are similar.
- > If two triangles are similar, then they are equiangular.

Some useful results on Similar Triangles:

wtsteam100@gmail.com

Chapter 4 - Geometry

Introduction for Exercise 4.2

Concept corner

Theorem 1: Basic Proportionality Theorem (BPT) or Thales theorem

Statement: A straight line drawn parallel to a side of triangle intersecting the other two sides, divides the sides in the same ratio.

Proof:

Given: In $\triangle ABC$, *D* is a point on *AB* and *E* is a point on *AC*. To prove: $\frac{AD}{DB} = \frac{AE}{EC}$

Construction: Draw a line DE || BC

No.	Statement	Reason
1.	$\angle ABC = \angle ADE = \angle 1$	Corresponding angles are equal because <i>DE</i> <i>BC</i>
2.	$\angle ACB = \angle AED = \angle 2$	Corresponding angles are equal because <i>DE</i> <i>BC</i>
3.	$\angle DAE = \angle BAC = \angle 3$ Both triangles have a common angle	
4.	$\Delta ABC \sim \Delta ADE$	By AAA similarity
	$\frac{AB}{AD} = \frac{AC}{AE}$	Corresponding sides are proportional
	$\frac{AD+DB}{AD} = \frac{AE+EC}{AE}$	Split AB and AC using the points D and E
	$1 + \frac{DB}{AD} = 1 + \frac{EC}{AE}$	On simplification
	$\frac{DB}{AD} = \frac{EC}{AE}$	Cancelling 1 on both sides
	$\frac{AD}{DB} = \frac{AE}{EC}$	Taking reciprocals
Hence proved		

Corollary: If in $\triangle ABC$, a straight line *DE* parallel to *BC*, intersects *AB* at *D* and *AC* at *E*, then (i) $\frac{AB}{AD} = \frac{AC}{AE}$ (ii) $\frac{AB}{DB} = \frac{AC}{EC}$

Theorem 2: Converse of Basic Proportionality Theorem

Statement: If a straight line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.

Proof:

Given: In $\triangle ABC$, $\frac{AD}{DB} = \frac{AE}{EC}$ To prove: $DE \parallel BC$ Construction: Draw $BF \parallel DE$

Ċ

4

Way to Success \degree - 10th Maths

No.	Statement	Reason	
1.	In $\triangle ABC$, BF DE	Construction]
2.	$\frac{AD}{DB} = \frac{AE}{EC} \dots \dots$	Thales theorem (In $\triangle ABC$ taking <i>D</i> in <i>AB</i> and in <i>AC</i>)]
3.	$\frac{AD}{EC} = \frac{AF}{FC} \dots \dots$	Thales theorem (In $\triangle ABC$ taking F in AC)	
4.	$\frac{AE}{EC} = \frac{AF}{FC}$	From (1) and (2)	
	$\frac{AE}{EC} + 1 = \frac{AF}{FC} + 1$	Adding 1 to both sides	
	$\frac{AE + EC}{EC} = \frac{AF + FC}{FC}$		
	$\frac{AC}{EC} = \frac{AC}{FC}$		
	EC = FC	Cancelling AC on both sides	
	Therefore, $E = F$	F lies between E and C.	
	Thus DE BC	Hence Proved	

Theorem 3: Angle Bisector Theorem

Statement: The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle. PTA-5 **Proof:**

Given : In $\triangle ABC$, *AD* is the internal bisector

To prove: $\frac{AB}{AC} = \frac{BD}{CD}$

Construction : Draw a line through *C* parallel to *AB*. Extend *AD* to meet line through *C* at *E*

No.	Statement	Reason
1.	$\angle AEC = \angle BAE = \angle 1$	Two parallel lines cut by a transversal make
		alternate angles equal.
2.	ΔACE is isosceles	In $\triangle ACE$, $\angle CAE = \triangle CEA$
	$AC = CE \dots (1)$	
3.	$\Delta ABD \sim \Delta ECD$	By AA similarity
	$\frac{AB}{CE} = \frac{BD}{CD}$	
4.	$\frac{AB}{AC} = \frac{BD}{CD}$	From (1) $AC = CE$
		Hence proved.

Chapter 4 - Geometry

Theorem 4: Converse of Angle Bisector Theorem

Statement: If a straight line through one vertex of a triangle divides the opposite side internally in the ratio of the other two sides, then the line bisects the angle internally at the vertex.

Proof:

Given : *ABC* is a triangle.

AD divides BC in the ratio of the sides containing the angles $\angle A$ to meet BC at D.

That is $\frac{AB}{AC} = \frac{BD}{DC}$ (1)

To prove : *AD* bisects $\angle A$ i.e. $\angle 1 = \angle 2$

Construction : Draw $CE \parallel DA$. Extend BA to meet at E.

No.	Statement	Reason	
1.	Let $\angle BAD = \angle 1$ and $\angle DAC = \angle 2$	Assumption	
2.	$\angle BAD = \angle AEC = \angle 1$	Since <i>DA</i> <i>CE</i> and <i>AC</i> is transversal,	
		corresponding angles are equal	
3.	$\angle DAC = \angle ACE = \angle 2$	Since <i>DA</i> <i>CE</i> and <i>AC</i> is transversal,	
		Alternate angles are equal	
4.	$\frac{BA}{AE} = \frac{BD}{DC} \dots \dots$	In $\triangle BCE$ by thales theorem	
5.	$\frac{AB}{AC} = \frac{BD}{DC}$	From (1)	
6.	$\frac{AB}{AC} = \frac{BA}{AE}$	From (1) and (2)	
7.	$AC = AE \dots (3)$	Cancelling <i>AB</i>	
8.	$\angle 1 = \angle 2$	ΔACE is isosceles by (3)	
9.	AD bisects $\angle A$	Since, $\angle 1 = \angle BAD = \angle 2 = \angle DAC$.	
		Hence proved	
Note: If C_1 , C_2 , are points on the circle, then all the triangles ΔBAC_1 , ΔBAC_2 , are with san			
base a	pase and the same vertical angle.		

Adding (1) and (2) we get

 $AB^{2} + AC^{2} = BC \times BD + BC \times DC$ $= BC \times (BD + DC)$

$$= BC \times (BD + DC)$$
$$= BC \times BC$$

$$= BC \times$$

 $AB^2 + AC^2 = BC^2$

Hence the theorem is proved.

Converse of Pythagoras Theorem

Statement: If the square of the longest side of a triangle is equal to sums of squares of other two sides, then the triangle is a right angle triangle.

Note:

- > In a right angles triangle, the side opposite to 90° (the right angle) is called the hypotenuse.
- > The other two sides are called legs of the right angled triangle.
- > The hypotenuse will be the longest side of the triangle.

Introduction for Exercise 4.4

Con	Concept corner			
	Figure 1		Figure 2	Figure 3
	. 0 . 0 P		.0 A P	
(i)	Straight line PQ does not	Straigh	t line PQ touches the	Straight line PQ
	touch the circle.	circle a	t a common point A	intersects the circle at
				two points A and B.
(ii) There is no common point	PQ is c	alled the tangent to	The line PQ is called a
	between the straight line	the circ	le at A	secant of the circle
	and circle			
(ii	i) Thus the number of point of	Thus th	ne number of points	Thus the number of
	intersection of a line and	of inter	section of a line and	points of intersection of a
	circle is zero.	circle is	one.	line and circle is two
Defir	Definition: If a line touches the given circle at only one point then it is called tangent to the			is called tangent to the
circl	circle.			
Theo	rem 6: Alternate Segment theore	m		R
Statement: If a line touches a circle and from the point of contact a chord is drawn, the angles between the tangent and the chord are respectively equal to the angles in the corresponding alternate segments. Proof:				
Giver	Given : A circle with centre at O , tangent AB touches the circle at P and PQ is a			
chord. S and T are two points on the circle in the opposite sides of chord PQ .				
To prove : (i) $\angle QPB = \angle PSQ$ and (ii) $\angle QPA = \angle PTQ$				
Cons	Construction : Draw the diameter <i>POR</i> . Draw <i>QR</i> , <i>QS</i> and <i>PS</i> .			
No.	Statement		Re	eason
1.	$\angle KPB = 90^{\circ}$		Diameter RP is perp	endicular to tangent
2	$In \Delta RPO \ \langle POR - 90^{\circ} \ (1)$		Angle in a semicircle	vis 90°

Way to Success $^{
m C}$ - 10th Maths

2	$(OPD + (PDO - OO^{\circ})) $ (2)	In a right angled triangle sum of the two
5.	$2QRF + 2RFQ = 90 \qquad \dots (3)$	III a light angleu trangle, sum of the two
		acute angles is 90°.
4.	$\angle RPQ + \angle QPB = \angle QRP + \angle RPQ$	From (1) and (3).
	$\angle QPB = \angle QRP \qquad \dots (4)$	
5.	$\angle QRP = \angle PSQ \qquad \dots (5)$	Angles in the same segment are equal.
6.	$\angle QPB = \angle PSQ \qquad \dots (6)$	From (4) and (5); Hence (i) is proved.
7.	$\angle QPB + \angle QPA = 180^{\circ} \qquad \dots (7)$	Linear pair of angles.
8.	$\angle PSQ + \angle PTQ = 180^{\circ} \qquad \dots (8)$	Sum of opposite angles of a cyclic
		quadrilateral is 180°.
9.	$\angle QPB + \angle QPA = \angle PSQ + \angle PTQ$	From (7) and (8).
10.	$\angle QPB + \angle QPA = \angle QPB + \angle PTQ$	$\angle QPB = \angle PSQ$ from (6)
11.	$\angle QPA = \angle PTQ$	Hence (ii) is proved.
		This completes the proof.

Definition: A **cevian** is a line segment that extends from one vertex of a triangle to the opposite side. In the diagram, AD is a cevian, from *A*.

Ceva's Theorem (without proof)

Statement: Let *ABC* be a triangle and let *D*, *E*, *F* be points on lines *BC*, *CA*, *AB* respectively. Then the cevians *AD*, *BE*, *CF* are concurrent if and only if $\frac{BD}{DC} \times \frac{CE}{EA} \times \frac{AF}{FB} = 1$ where the lengths are directed. This also works for the reciprocal of each of the ratios as the reciporcal of 1 is 1.

Note: The cevians do not necessarily lie within the triangle, although they do in the diagram **Menelaus Theorem (without proof)**

Statement: A necessary and sufficient condition for points *P*, *Q*, *R* on the respective sides *BC*, *CA*, *AB* (or their extension) of a triangle *ABC* to be collinear is that $\frac{BP}{PC} \times \frac{CQ}{QA} \times \frac{AR}{RB} = -1$ where all segments in the formula are directed segments.

Note:

- > Menelaus theorem can also be given as $BP \times CQ \times AR = -PC \times QA \times RB$
- If BP is replaced by PB (or) CQ by QC (or) AR by RA, or if any one of the six directed line segments BP, PC, CQ, QA, AR, RB is interchanged, then the product will be 1.
- > Centroid is the point of concurrence of the median of a triangle.

