September 2020 Exam Answer Key

Part - I

Q.no	Option	Answer	Book Question Number
1	(a)	$(A \times C) \subset (B \times D)$	Ex.1.6 – Q.No (3)
2	(c)	2-4x	Creative
3	(a)	0, 1, 8	Ex.2.10 - Q.No (2)
4	(d)	A is larger than B by 1	Ex.2.10 - Q.No (12)
5	(d)	1	Creative
6	(d)	Row matrix	Ex.3.20 - Q.No (17)
7	(b)	70°	Ex.4.5 - Q.No (2)
8	(a)	120°	Ex.4.5 - Q.No (15)
9	(b)	Parallel to Y-axis	Ex.5.5 - Q.No (3)
10	(c)	2	Creative
11	(c)	6 cm	Creative
12	(a)	2:1	Ex.7.5 - Q.No (12)
13	(b)	160900	Ex.8.5 - Q.No (4)
14	(c)	23/26	Ex.8.5 - Q.No (14)

Part - II

15. Example 1.2

$$A \times B = \{(3,2), (3,4), (5,2), (5,4)\}$$

 $A = \{ \text{set of all first coordinate of elements of } A \times B \}$

$$A = \{3,5\}$$

 $B = \{ \text{set of all second coordinates of elements of } A \times B \}$

$$B = \{2,4\}$$

16. Exercise 1.4 - Question Number 5

The function $f: \mathbb{N} \to \mathbb{N}$ defined by

$$f(m) = m^2 + m + 3$$

$$m = 1$$
, $f(1) = (1)^2 + 1 + 3 = 1 + 1 + 3 = 5$

$$m = 2, f(2) = (2)^2 + 2 + 3 = 4 + 2 + 3 = 9$$

$$m = 3, f(3) = (3)^2 + 3 + 3 = 9 + 3 + 3 = 15$$

$$m = 4, f(4) = (4)^2 + 4 + 3 = 16 + 4 + 3 = 23$$

Since different elements of N have different images in the codomain the function of f is one-one function.

17. Exercise 2.2 – Question Number 2

$$n = 1, m = 1 \Rightarrow 2^{1} \times 5^{1} = 2 \times 5 = 10$$

 $n = 1, m = 2 \Rightarrow 2^{1} \times 5^{2} = 2 \times 25 = 50$
 $n = 2, m = 3 \Rightarrow 2^{2} \times 5^{3} = 4 \times 125$
 $= 500$

 $\therefore 2^n$ is always even.

So that, the product of 5 is in always end digit is 0.

Hence, **No value** of $2^n \times 5^m$ end with the digit 5.

September 2020 Exam Answer Key

18. Creative Question

$$a_3 = 3^2 = 9$$
 (: 3 is odd)
 $a_4 = \frac{4^2}{3} = \frac{16}{3} = 8$ (: 4 is odd)

19. Creative Question

$$1^{2} + 2^{2} + 3^{2} + \dots + 10^{2} = \frac{10 \times 11 \times 21}{6} = 385$$
$$2^{2} + 4^{2} + 6^{2} + \dots + 20^{2} = 2^{2} [1^{2} + 2^{2} + 3^{2} + \dots + 10^{2}] = 4 \times 385 = 1540$$

20. Creative Question

$$9x^2 + 3kx + 4 = 0 \Rightarrow a = 9, b = 3k, c = 4$$

If roots are real and equal, $b^2 - 4ac = 0$

$$(3k)^{2} - 4 \times 9 \times 4 = 0$$

$$9k^{2} - 144 = 0$$

$$k^{2} = \frac{144}{9}$$

$$k^{2} = 16$$

$$k = +4 \text{ or } -4$$

21. Exercise 3.17 - Question Number 5

$$-A = \begin{bmatrix} -\sqrt{7} & 3\\ \sqrt{5} & -2\\ -\sqrt{3} & 5 \end{bmatrix}$$

Transpose of $-A = \begin{bmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & 5 \end{bmatrix}$

22. Exercise 4.2 - Question Number 8(i)

$$\frac{AB}{AC} = \frac{5}{10}$$

$$\frac{AB}{AC} = \frac{1}{2} \dots (1)$$

$$\frac{BD}{DC} = \frac{1.5}{3.5}$$

$$\frac{BD}{DC} = \frac{15}{35}$$

$$\frac{BD}{DC} = \frac{3}{7} \dots (2)$$

$$(1) & (2) \Rightarrow \frac{AB}{AC} \neq \frac{BD}{DC}$$

 $\therefore AD$ is **not an angle bisector** of $\angle A$

September 2020 Exam Answer Key

23. Example 5.9 (iii)

The slope =
$$\frac{-6-10}{14-14} = \frac{-16}{0}$$

The slope is undefined

24. Exercise 6.1 – Question Number 3(i)

$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} = \sqrt{\frac{1+\sin\theta}{1-\sin\theta}} \times \frac{1+\sin\theta}{1+\sin\theta}$$

$$= \sqrt{\frac{(1+\sin\theta)^2}{1-\sin^2\theta}}$$

$$= \sqrt{\frac{(1+\sin\theta)^2}{\cos^2\theta}}$$

$$= \frac{1+\sin\theta}{\cos\theta}$$

$$= \frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta}$$

$$= \sec\theta + \tan\theta$$

25. Example 7.8

Let r be the radius of the sphere.

Given that, surface area of sphere = $154 m^2$

$$4\pi r^2 = 154$$

$$4 \times \frac{22}{7} \times r^2 = 154$$

$$r^2 = 154 \times \frac{1}{4} \times \frac{7}{22}$$

$$r^2 = \frac{49}{4} \text{ we get } r = \frac{7}{2}$$

Therefore, diameter is 7m Type equation here.

26. Creative Question

Base area of hemisphere $\pi r^2 = 1386$ sq.m

$$= 3\pi r^2$$
$$= 3 \times 1386$$
$$= 4158 \text{ sq.m}$$

27. Exercise 8.1 – Question Number 1(i)

Arrange in Ascending order:

$$Range = L - S$$

= 125 - 63 = 62

September 2020 Exam Answer Key

Coefficient of Range =
$$\frac{L-S}{L+S}$$

= $\frac{125-63}{125+63}$
= $\frac{62}{188}$
= 0.3297
= **0.33**

28. Creative Question

$$h = 9 \text{ cm}, R = 5 \text{ cm}, r = 3 \text{ cm}$$

Volume of hollow cylinder =
$$\pi(R^2 - r^2)h$$
 cu.units
= $\frac{22}{7} \times (5^2 - 3^2) \times 9$
= $\frac{22}{7} \times (25 - 9) \times 9$
= $\frac{22}{7} \times (16) \times 9$

Part - III

29. Exercise 1.1 – Question Number 7(i)

A =The set of all natural numbers less than $8 = \{1,2,3,4,56,7\}$

B =The set of all prime numbers less than $8 = \{2,3,5,7\}$

C =The set of even prime number = $\{2\}$

$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

LHS:
$$A \cap B = \{1,2,3,4,5,6,7\} \cap \{2,3,5,7\}$$

= $\{2,3,5,7\}$
 $(A \cap B) \times C = \{2,3,5,7\} \times \{2\} = \{(\mathbf{2},\mathbf{2}),(\mathbf{3},\mathbf{2}),(\mathbf{5},\mathbf{2}),(\mathbf{7},\mathbf{2})\}$(1)

RHS:

$$A \times C = \{1,2,3,4,56,7\} \times \{2\}$$

 $= \{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2)\}$
 $B \times C = \{2,3,5,7\} \times \{2\} = \{(2,2),(3,2),(5,2),(7,2)\}$
 $(A \times C) \cap (B \times C) = \{(\mathbf{2},\mathbf{2}),(\mathbf{3},\mathbf{2}),(\mathbf{5},\mathbf{2}),(\mathbf{7},\mathbf{2})\}$ (2)
From (1) and (2), $(\mathbf{A} \cap \mathbf{B}) \times \mathbf{C} = (\mathbf{A} \times \mathbf{C}) \cap (\mathbf{B} \times \mathbf{C})$

September 2020 Exam Answer Key

30. Example 1.11

$$A = \{1, 2, 3, 4\}$$
; $B = \{2, 5, 8, 11, 14\}$; $f(x) = 3x - 1$

$$f(1) = 3(1) - 1 = 3 - 1 = 2$$
; $f(2) = 3(2) - 1 = 6 - 1 = 5$

$$f(3) = 3(3) - 1 = 9 - 1 = 8$$
; $f(4) = 4(3) - 1 = 12 - 1 = 11$

(i) Arrow diagram

Let us represent the function $f: A \rightarrow B$ by an arrow diagram (Fig.1.19).

Fig. 1.19

(ii) Table form

The given function f can be represented in a tabular form as given below

ı	x	1	2	3	4
	f(x)	2	5	8	11

(iii) Set of ordered pairs

The function f can be represented as a set of ordered pairs as

$$f = \{(1,2),(2,5),(3,8),(4,11)\}$$

In the adjacent XY-plane the points (1,2), (2,5), (3,8), (4,11) are plotted (Fig.1.20).

31. **Creative Questions**

(iv) Graphical form

Sum of all natural numbers between 100 and 1000 which are divisible by 11

$$= 110 + 121 + 132 + \dots + 990$$

$$= 11[10 + 11 + 12 + \dots + 90]$$

Sum of natural numbers a to $b = \frac{(a+b)(a-b+1)}{2}$

$$=11\left[\frac{(90+10)(90-10+1)}{2}\right]$$

$$=11\left[\frac{100\times81}{2}\right]$$

$$= 11 \times 50 \times 81$$

$$= 44,550$$

September 2020 Exam Answer Key

32. Creative Questions

$$6x + 2y - 5z = 13$$
(1)

$$3x + 3y - 2z = 13$$
(2)

$$7x + 5y - 3z = 26$$
(3)

$$(2) \times 5 \Rightarrow 15x + 15y - 10z = 65$$

$$(1) \times 2 \Rightarrow 12x + 4y - 10z = 26$$

$$(-)$$
 $3x + 11y = 39$ (4)

$$(3) \times 2 \Rightarrow 14x + 10y - 6z = 52$$

$$(2) \times 3 \quad \Rightarrow 9x + \quad 9y - 6z = 39$$

(2)×3
$$\Rightarrow 9x + 9y - 6z = 39$$

(-) $5x + y = 13$ (5)

$$(4) \times \quad \Rightarrow \quad 3x + 11y = 39$$

$$(5) \times 11 \Rightarrow 55x + 11y = 143$$

$$(-)$$
 $-52x = -104$

$$52x = 104$$

$$\chi = \frac{104}{52}$$

$$x = 2$$

Sub
$$x = 2$$
 in (4),

$$3(2) + 11y = 39$$

$$6 + 11y = 39$$

$$11y = 39 - 6$$

$$11y = 33$$

$$y = \frac{33}{11}$$

$$y = 3$$

Sub
$$x = 2, y = 3$$
 in (1)

$$6(2) + 2(3) - 5z = 13$$

$$12 + 6 - 5z = 13$$

$$18 - 5z = 13$$

$$-5z = -5$$

$$z = 1$$

September 2020 Exam Answer Key

33. Exercise 3.2 - Question Number 1 (i)

$$f(x) = x^{4} + 3x^{3} - x - 3$$

$$g(x) = x^{3} + x^{2} - 5x + 3$$

$$x + 2$$

$$x^{3} + x^{2} - 5x + 3$$

$$x^{4} + 3x^{3} - 0x^{2} - x - 3$$

$$x^{4} + x^{3} - 5x^{2} + 3x$$

$$(-) (-) (+) (-)$$

$$2x^{3} + 5x^{2} - 4x - 3$$

$$2x^{3} + 2x^{2} - 10x + 6$$

$$(-) (-) (+) (-)$$

$$3x^{2} + 6x - 9$$

$$3[x^{2} + 2x - 3]$$

 $3[x^2 + 2x - 3] \neq 0$ here 3 is not a divisor of g(x)

$$\begin{array}{c}
x - 1 \\
x^{2} + 2x - 3 \\
x^{3} + x^{2} - 5x + 3 \\
x^{3} + 2x^{2} - 3x \\
(-) \quad (-) \quad (+) \\
-x^{2} - 2x + 3 \\
x^{2} - 2x + 3 \\
(+) \quad (+) \quad (-) \\
0
\end{array}$$

34. Creative Question

$$\frac{\frac{x}{y} - 5}{\frac{x^{2}}{y^{2}} - \frac{10x}{y} + 27 - \frac{10y}{x} + \frac{y^{2}}{x^{2}}}$$

$$\frac{\frac{x}{y}}{\frac{x^{2}}{y^{2}} - \frac{10x}{y} + 27 - \frac{10y}{x} + \frac{y^{2}}{x^{2}}}$$

$$\frac{\frac{2x}{y} - 5}{-\frac{10x}{y} + 27}$$

$$-\frac{\frac{10x}{y} + 25}{-\frac{10y}{y} + 25}$$

$$(+) (-)$$

$$\frac{2 - \frac{10y}{x} + \frac{y^{2}}{x^{2}}}{2 - \frac{10y}{x} + \frac{y^{2}}{x^{2}}}$$

$$2 - \frac{10y}{x} + \frac{y^{2}}{x^{2}}$$

$$2 - \frac{10y}{x} + \frac{y^{2}}{x^{2}}$$

$$(-) (+) (-)$$

$$0$$

$$\therefore \sqrt{\frac{x^2}{y^2} - \frac{10y}{x} + 27 - \frac{10y}{x} + \frac{y^2}{x^2}} = \left| \frac{x}{y} - 5 + \frac{y}{x} \right|$$

September 2020 Exam Answer Key

35. **Example 3.73**

LHS =
$$(AB)^T$$

$$AB = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix}_{2\times 3} \times \begin{pmatrix} 2 & -1 \\ -1 & 4 \\ 0 & 2 \end{pmatrix}_{3\times 2}$$

$$= \begin{pmatrix} 2-2+0 & -1+8+2 \\ 4+1+0 & -2-4+2 \end{pmatrix} = \begin{pmatrix} 0 & 9 \\ 5 & -4 \end{pmatrix}$$

$$B^TA^T = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 4 & 2 \end{pmatrix}, A^T = \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 1 \end{pmatrix}$$

$$B^TA^T = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 4 & 2 \end{pmatrix}_{2\times 3} \times \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2-2+0 & 4+1+0 \\ -1+8+2 & -2-4+2 \end{pmatrix}$$

$$B^TA^T = \begin{pmatrix} 0 & 5 \\ 9 & -4 \end{pmatrix} \qquad \dots (1)$$

From (1) and (2), $(AB)^{T} = B^{T}A^{T}$.

Hence proved.

36. Theorem

Angle Bisector Theorem

Statement: The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle.

Proof:

Given : In $\triangle ABC$, AD is the internal bisector

To prove: $\frac{AB}{AC} = \frac{BD}{CD}$

Construction : Draw a line through ${\it C}$ parallel to ${\it AB}$. Extend ${\it AD}$ to meet line through ${\it C}$ at ${\it E}$

No.	Statement	Reason
1.	$\angle AEC = \angle BAE = \angle 1$	Two parallel lines cut by a transversal make
		alternate angles equal.
2.	ΔACE is isosceles	In $\triangle ACE$, $\angle CAE = \triangle CEA$
	$AC = CE \dots (1)$	
3.	$\Delta ABD \sim \Delta ECD$	By AA similarity
	$\frac{AB}{}=\frac{BD}{}$	
	CE CD	
4.	$\frac{AB}{AB} = \frac{BD}{AB}$	From (1) $AC = CE$
	AC CD	Hence proved.

September 2020 Exam Answer Key

37. Exercise 5.1 – Question Number 6

Area of quadrilateral = 28 square units

$$\frac{1}{2} \begin{bmatrix} -4 & -3 & 3 & 2 & -4 \\ -2 & k & -2 & 3 & -2 \end{bmatrix} = 28$$

$$[(-4k+6+9-4) - (6+3k-4-12)] = 56$$

$$(-4k+11) - (3k-10) = 56$$

$$-4k+11 - 3k+10 = 56$$

$$-7k = 56-21$$

$$-7k = 35$$

$$k = \frac{35}{-7}$$

$$k = -5$$

38. Exercise 6.3 - Question Number 3

$$AB = \text{Tower} = 60m$$

$$CD = \text{lamp post} = h$$

$$AE = x$$

$$CD = BE = 60 - x = h$$

In right angle \triangle *AEC*

$$tan 38^{\circ} = \frac{AE}{DE} = 0.7813$$

$$DE = \frac{x}{0.7813}$$
....(1)

In right angle $\triangle ABC$

$$\theta = 60^{\circ}$$

$$\tan 60^{\circ} = \frac{AB}{BC} = \sqrt{3}$$

$$\frac{60}{80} = \sqrt{3}$$

$$BC = \frac{60}{\sqrt{3}}$$

$$BC = \frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$=\frac{60\sqrt{3}}{3}$$

$$BC = 20\sqrt{3}$$

$$BC = DE$$

$$DE = 20\sqrt{3}$$
(2)

From (1) & (2)

$$DE \Rightarrow \frac{x}{0.7813} = 20\sqrt{3}$$

$$x = 20\sqrt{3} \times 0.7813$$

$$x = 20 \times 1.732 \times 0.7813$$

$$x = 27.064m$$

Height of the lamp post

$$h = 60 - x$$

$$=60-27.064$$

$$h = 32.93m$$

September 2020 Exam Answer Key

39. Exercise 7.2 – Question Number 2

Volume of water raised in cylindrical glass

= Volume of cylindrical metal immersed

$$\pi R^{2}H = \pi r^{2}h$$

$$\pi \times 10 \times 10 \times h = \pi \times 5 \times 5 \times 4$$

$$h = \frac{5 \times 5 \times 4}{10 \times 10}$$

$$= 1$$

The raise of the water in the glass = 1 cm

40. Creative Question

х	$d = x_i - A$	$d = \frac{x - A}{C}$	d^2
	$= x_i - 70$	· C	
40	-30	-6	36
50	-20	-4	16
60	-10	-2	4
70	0	0	0
80	10	2	4
90	20	4	16
95	25	5	25
		$\Sigma d = -1$	$\Sigma d^2 = 101$

$$\sigma = \sqrt{\frac{\Sigma d^2}{n} - \left(\frac{\Sigma d}{n}\right)^2} \times C$$

$$= \sqrt{\frac{101}{7} - \left(\frac{-1}{7}\right)^2} \times 5$$

$$= \sqrt{\frac{101}{7} - \frac{1}{49}} \times 5$$

$$= \sqrt{\frac{706}{49}} \times 5$$

$$= \sqrt{14.41} \times 5$$

$$= 7.76$$

 $\sigma \cong 19$

September 2020 Exam Answer Key

41. Exercise 8.3 - Question Number 7

Two unbiased dice are rolled once.

$$S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6) \\ (2,1), (2,2), (2,3), (2,4), (2,5), (2,6) \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) \\ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6) \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$$

$$n(S) = 36$$

(i) Let the *A* be event of getting a doublet.

$$A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$$

$$n(A) = 6,$$

$$\therefore P(A) = \frac{n(A)}{n(S)} = \frac{6}{36} = \frac{1}{6}$$

(ii) Let *B* be the event of getting the product as a prime number.

$$B = \{(1,2), (1,3), (1,5), (2,1), (3,1), (5,1)\}$$

$$n(B) = 6$$

$$\therefore P(B) = \frac{n(B)}{n(S)} = \frac{6}{36} = \frac{1}{6}$$

(iii) Let *C* be the event of getting the sum as a prime number.

$$\{(1,1), (1,2), (1,4), (1,6), (2,1), \\ C = (2,3), (2,5), (3,2), (3,4), (4,1), \\ (4,3), (5,2), (5,6), (6,1), (6,5)\}$$

$$n(C) = 15$$

$$\therefore P(C) = \frac{n(C)}{n(S)} = \frac{15}{36} = \frac{5}{12}$$

(iv) Let *D* be the event of getting the sum as 1.

$$D = \{ \}$$

$$n(D) = 0$$

$$\therefore P(D) = \frac{n(D)}{n(S)} = \frac{0}{36} = 0$$

$$\therefore P(D) = \mathbf{0}$$

September 2020 Exam Answer Key

42. Creative Question

Required equation of *AB* is $\frac{x}{a} + \frac{y}{b} = 1$ (1)

If equation (1) meet X –axis, $y = 0 \Rightarrow x = a$

A(a,0)

If equation (1) meet Y -axis, $x = 0 \Rightarrow y = b$

 $\therefore B(0,b)$

Mid point of AB is (2,3)

$$\left(\frac{a+0}{2}, \frac{0+b}{2}\right) = (2,3)$$

$$\left(\frac{a}{2}, \frac{b}{2}\right) = (2,3)$$

$$\frac{a}{2} = 2 \Rightarrow a = 4$$

$$\frac{b}{2} = 3 \Rightarrow b = 6$$

 $\therefore \text{ Equation of } AB \text{ is } \frac{x}{4} + \frac{y}{6} = 1$

$$\frac{6x+4y}{24} = 1$$

$$6x + 4y = 24$$

$$\div by 2, \qquad 3x + 2y = 12$$

September 2020 Exam Answer Key

Part - IV

43. (a) Exercise 4.1 – Question Number 12

Rough Diagram

Note: If $\frac{6}{5} > 1$, then the similar triangle will be outside

Steps	of co	nstru	ction:

1. Construct a $\triangle ABC$ with any measurement.

- 2. Draw a ray *BX* making an acute angle with *BC* on the side opposite to vertex *A*.
- 3. Locate 6 points (the greater of 6 and 5 in $\frac{6}{5}$) B_1 , B_2 , B_3 , B_4 , B_5 and B_6 on BX so that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5 = B_5B_6$

- 4. Joint B_4 (the 5th point, 5 being smaller of 6 and 5 in $\frac{6}{5}$) to A and draw a line through B_6 parallel to B_5C intersecting the extended line segment BC at C'.
- 5. Draw a line through C' parallel to CA intersecting the extended line segment BA at A'. Then A'BC' is the required triangle each of whose sides is six-fifths of the corresponding sides of $\triangle ABC$.

September 2020 Exam Answer Key

(b) Exercise 4.4 – Question Number 13

The length of the tangent is 8.7cm

Verification:

$$PA = \sqrt{OP^2 - OA^2}$$
 = $\sqrt{10^2 - 5^2}$ = $\sqrt{100 - 25}$ = $\sqrt{75}$ \simeq 8.7 cm

Construction:

September 2020 Exam Answer Key

44. (a) Example 3.51 (ii)

$$x^2 - 8x + 16 = 0$$

\boldsymbol{x}	-1	0	1	2	3	4	5	6	7	8
y	25	16	9	4	1	0	1	4	9	16

Solution: {4,0}

Real and equal roots

September 2020 Exam Answer Key

(b) Exercise 3.16 – Question Number 7

$y = 2x^2 - 3x - 5$								
x	-2	-1	0	1	2	3	4	5
x^2	4	1	0	1	4	9	16	25
$\int 2x^2$	8	2	0	2	8	18	32	50
-3x	6	3	0	-3	-6	-9	-12	-15
-5	-5	-5	-5	-5	-5	-5	-5	-5
$y = 2x^2 - 3x - 5$	9	0	-5	-6	-3	4	15	30

Points: (-2,9), (-1,0), (0,-5), (1,-6), (2,-3), (3,4), (4,15), (5,30) $y = 2x^2 - 3x - 5$ $0 = 2x^2 - 4x - 6$ $\frac{-\mu x}{x} = \frac{(-)}{x} + 1$

x	-2	-1	0	1	2	3
1	1	1	1	1	1	1
y = x + 1	-1	0	1	2	3	4

Points: (-2, -1), (-1,0), (0,1), (1,2), (2,3), (3,4)

For 10th Maths Full Video class @ Youtube subscribe

"Dinesh Centum Maths"