DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI- 6 HSE SECOND YEAR EXAMINATION – MARCH/APRIL – 2023 PHYSICS KEY ANSWER

NOTE:

- 1. Answers written with Blue or Black ink only to be evaluated.
- 2. Choose the most suitable answer in Part A from the given alternatives and write the option code and their corresponding answer.
- 3. For answers in Part II , Part III , Part IV like reasoning , explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
- 4. In numerical problems if formula is not written, marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

TOTAL MARKS: 70

PART-I

Answer all the Questions: 15x1=15

Q.NO	OPTION	TYPE-A	Q.NO.	OPTION	TYPE-B
1	С	$\lambda_{p} \propto \lambda_{e}^{2}$	1	b	Shape memory alloys
2	С	$\frac{3}{8}I$	2	С	900 Vm ⁻¹
3	С	900 V m^{-1}	3	С	4.5 Ω
4	С	4.5 Ω	4	b	Water
5	d	Yellow-Violet-Orange-Silver	5	а	-40 V
6	d	$\frac{h}{\pi}$	6	а	+Z direction
7	b	2 D	7	С	Energy density
8	С	Energy density	8	b	2 D
9	а	+Z direction	9	d	1.1eV
10	b	30°	10	С	$\frac{3}{8}I$
11	С	Voltage regulator	11	b	30 ⁰
12	а	– 40 V	12	d	Yellow-Violet-Orange- Silver
13	b	Water	13	d	$\frac{h}{\pi}$
14	d	1.1eV	14	С	Voltage regulator
15	b	Shape memory alloys	15	С	$\lambda_{p} \propto \lambda_{e}^{2}$

16	The electric field at a point P at a distance r from the point charge q is defined as the force experienced by a unit charge placed at that point.	2	
	(or)		2
	The force experienced by unit positive charge (or)	2	
	$\overrightarrow{E} = \frac{\overrightarrow{F}}{q_0}$ (or) $\overrightarrow{E} = K \frac{q}{r^2} \widehat{r}$ (or) $\overrightarrow{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \widehat{r}$	1	
	Q factor is defined as the ratio of voltage across L or C at resonance	2	
	to Applied voltage.		
	$Q - factor = \frac{Voltage \ across \ L \ (or) \ C \ at \ resonance}{Applied \ Voltage}$	2	
	(Or)		2
	$Q = \frac{I_m X_L}{I_m R} \text{ (or) } Q = \frac{X_L}{R} \text{ (or) } Q = \frac{\omega_r L}{R} \text{ (or) } Q = \frac{1}{R} \sqrt{\frac{L}{C}}$	1	
18	The line integral of magnetic field over a closed loop is μ_0 times net	2	
	current enclosed by the loop.		0
	$ \oint \vec{B} \cdot \vec{d\ell} = \mu_0 I_{\text{enclosed}} $	1	2
	y 2. at Professional		
19	The total internal reflection of light that happens inside the	1	
	diamond. n=2.417 (or) $i_c = 24.4^{\circ}$	1	2
20	$I \propto a^2$ (or) $I_1 \propto a_1^2$ and $I_2 \propto a_2^2$	1	
	$\frac{I_1}{I_2} = \frac{a_1^2}{a_2^2}$ (or) $\frac{a_1}{a_2} = \sqrt{\frac{I_1}{I_2}} = \sqrt{\frac{36}{1}}$	1/2	
	- '	1/2	
	$\frac{a_1}{a_2} = \frac{6}{1}$		
	(or)		2
	$I \propto a^2$ (or) $I_{max} \propto (a_1 + a_2)^2$ and $I_{min} \propto (a_1 - a_2)^2$	1	
	$\frac{I_{max}}{I_{min}} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2} \text{(or)} \frac{(a_1 + a_2)}{(a_1 - a_2)} = \sqrt{\frac{I_{max}}{I_{min}}} = \sqrt{\frac{36}{1}}$	1/2	
	$\frac{(a_1+a_2)}{(a_1-a_2)} = \frac{6}{1}$ and $\frac{a_1}{a_2} = \frac{7}{5}$	1/2	
21	The minimum energy needed for an electron to escape from the	1½	
	metal surface is called work function.		
	Unit - eV or Joule	1/2	2
	$\phi_0 = h \nu_o$	1	

22	Activity or decay rate is the number of nuclei decayed per second. Unit : Becquerel (or) curie (or) $R = \left \frac{\mathrm{dN}}{\mathrm{dt}}\right \text{ (or) } R = \lambda N_0 e^{-\lambda t} \text{ (or) } R = R_0 e^{-\lambda t} \text{ (or) } R = \lambda N$	1½ ½	2
23	Current flow during positive half cycle M D Current flow during negative half cycle	2	2
24	$R_T = R_0 (1 + \infty (T - T_0))$ Substitution Answer 3.96 Ω	1 ½ ½	2

PART-III

Answer Any Six Questions : Q.No. 33 is Compulsory

6×3=18

, ,	nawer Any Six Questions . Q.140. 33 is Compulsory	3 – 10	
25	Diagram and explanation	1	
	Upto V = $-\frac{1}{4\pi \epsilon_0} \int_{\infty}^{r} \frac{q}{r^2} \widehat{r} \cdot \overrightarrow{dr}$ $V = \frac{1}{4\pi \epsilon_0} \frac{q}{r}$	1	3
26	Kirchhoff's current rule: It states that the algebraic sum of the currents at any junction of a circuit is zero. Kirchhoff's voltage rule: It states that in a closed circuit, the algebraic sum of the products of the current and resistance of each part of the circuit is equal to the total emf included in the circuit.	11/2	3
27	By connecting low resistance in parallel with the galvanometer we can convert galvanometer into an ammeter.	1	
	Diagram C S D I - Ig I - A Ig G I - Ig E I	1/2	3
	Upto $S = \frac{I_g}{I - I_g} R_g$ (or) $I_g = \frac{S}{S + R_g} I$	1	
	$\frac{1}{R_{eff}} = \frac{1}{R_g} + \frac{1}{S} \text{ (or) } R_{eff} = \frac{R_g S}{R_g + S} \text{ (or) } \theta = \frac{1}{G} I_g \text{ (or) } \theta \alpha I_g \text{ (or) } \theta \alpha I$	1/2	

28	Diagram & Explanation	1	
	$ upto \frac{d\phi_B}{dt} = Blv $	1	3
	$\mathcal{E} = BIV \qquad \times \overset{C \leftarrow \mathit{vdt} \rightarrow B}{\times} \times \overset{C \leftarrow \mathit{vdt} \rightarrow B}{\times} \times \overset{C \leftarrow \mathit{vdt} \rightarrow B}{\to} \times \overset{C \leftarrow C \leftarrow C}{\to} \times \overset{C \leftarrow C \leftarrow C}{\to} \times \overset{C \leftarrow C}{\to} \times \mathsf{$	1	3
29	The dark lines in the solar spectrum are known as Fraunhofer lines.	2	
	The absorption spectra for various materials are compared with the Fraunhofer lines in the solar spectrum, which helps in identifying elements present in the Sun's atmosphere	1	3
30	$R_{net} = 2 + 2 = 4\Omega$	1	
	$I = \frac{V}{R} = \frac{10}{4}$	1	3
	I = 2.5 A	1	
31	Optical path of a medium is defined as the distance d' light travels in vacuum in the same time it travels a distance d in the medium Optical path $\mathbf{d'} = \mathbf{n} \ \mathbf{d}$	1½ ½	3
	Where, d' distance travelled by the light in vacuum n Refractive index of the medium d distance travelled by the light in medium	1	3
32	Laws of photo electric effect – any Three	3×1	3
33	Number of atoms in $1 kg$ Of $^{235}_{92}U$ $6.02 X 10^{23}$	1	
	$N = \frac{6.02 X 10^{23}}{235} X 1000$	1	3
	Total energy, $Q = \frac{6.02 \times 10^{26}}{235} X \ 200 \ MeV = 5.123 \ X \ 10^{26} MeV$ In terms of joule, $Q = 8.197 \ X \ 10^{13} \ J$	1	

PART-IV

Answer all the Questions:

5×5=25

34 (a)	(i)	Coulomb's law – Statement (or) Formula	2 1			
	(ii)	Differences between coulomb's force and gravitational force (Any Three)	3	5		
	(OR)					

34 (b)	Diagram Explanation upto $\theta = \frac{\pi}{N}$ upto $t = \frac{\pi}{N\omega}$ $V = \frac{2dN\omega}{\pi}$	1 1 1 1	5
35 (a)	Principle Diagram Construction and working Upto $r=\frac{mv}{Bq}$ $f=\frac{Bq}{2\pi m} \text{ (or) } T=\frac{2\pi m}{Bq} \text{ (or) } KE=\frac{q^2B^2r^2}{2m}$	1 1 1 1	5
	(OR)		
35 (b)	Diagram Explanation Path difference $\delta = \frac{a}{2} \sin \theta$	1 1 1	5
	Condition for first minimum a $\sin\theta = \lambda$ Condition for second minimum a $\sin\theta = 2\lambda$ Condition for third minimum a $\sin\theta = 3\lambda$ Condition for n^{th} minimum a $\sin\theta = n\lambda$ Where $n = 1, 2, 3, \ldots$	1	

Г		Ī	
36 (a)	Series RLC circuit Diagram & Explanation	1	
	Phasor diagram $V_{V_{I}} = V_{m}^{E} \text{ in et}$ $V_{I} = V_{m}^{E} \text{ in et}$	1	5
	Upto $V_m^2 = V_R^2 + (V_L - V_C)^2$	1	3
	Upto Z = $\sqrt{R^2 + (X_L - X_C)^2}$	1	
	$ \tan \phi = \frac{V_L - V_C}{V_R} $ (or) $\tan \phi = \frac{X_L - X_C}{R}$	1	
	(OR)		I
36 (b)	Diagram	1	
00 (0)	Explanation	2	
	Scattered beam Ni crystal	1	E
	Graph Properties of diffracted detection beam properties of diffracted detection detection beam properties of diffracted detection dete	1	5
	$\lambda = \frac{12.27}{\sqrt{V}} A^0 = \frac{12.27}{\sqrt{54}} A^0 = 1.67 A^0$		
0.7			
37	Diagram — dx —	1	
(a)	Diagram	'	
()	Explanation	1	
	A		
	$Up \ to I = \frac{dQ}{dt}$	1	5
	$I = n e A v_d$	1	
	$\vec{J} = -\sigma \vec{E}$ (or) $\vec{J} = \sigma \vec{E}$	-	
	(OR)		-

		<u></u>	
37 (b)	Diagram $ \text{Upto } \overrightarrow{F}_{coulomb} = \overrightarrow{F}_{centripetal} $ Nucleus is assumed to be stationary $ r_n = \frac{4\pi\varepsilon_0(mv_nr_n)^2}{Zme^2} $ Upto $r_n = a_0\frac{n^2}{Z} $	1 1 1	5
	$v_n = \frac{h}{2\pi m a_0} \frac{Z}{n}$ (or) $v_n \alpha \frac{1}{n}$	1	
38 (a)	Any Four properties of EM waves $n = \sqrt{\epsilon_r \mu_r}$ $n = \sqrt{2.5 \times 2.25} = 2.37 \text{ (no unit)}$	4×1 ½ ½	5
	(OR)	_	
38 (b)	Circuit diagram $\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1	5