

10th Standard

Maths

SECOND REVISION TEST - 2023

Various District Question Paper Collection

WAY TO SUCCESS Chennai

-	LASS : 10 SE	COND RI	CAIPIO	MATH	EM	ATICS	UAR	Y-2023	VIII 100066
Th	ne Allowed : 3.00 Ho	bursj		WATT	EIV	AIICS			[Max. Marks : 100
	The same as a set			P	ART -	- A			
I.,	Choose the bes	t answer of	the foll	owing:		14			14x1=14
1.	If there are 1024	relations fro	om a set.	$A = \{1, 2, 3\}$	0, 4, 0) to a set B, the	n the r	umber o	f elements in B is
~	(a) 3	(b)	3	Alization	then	4	d)	8	
2	(c) 5	epresents an	n constar	nt tuncuon.	(c)	the value of his	1		
2	(a) = (mod 100)	(0)	0		(0)	1	(d)	1	
2	(a) 1	(b)	2		(c)	3			C.V
		(6)	3 1	1 1	1.41	3	(a)	4	
4.	The next term of	the sequen	ce 16 '8	12'18'	*******	is		1	
	(2) 1	(1.)	1		(0)	2		1/	1.1
	(a) <u>24</u>	(D)	27		(C)	3	(d)	81	\land
5.	The system three	of linear eq	uation in	three varia	ables	is inconsistent i	ftheir	plane is	
	(a) intersect onl	y at a point			(b)	Intersect in a l	ine	1	Y
	(c) Coincide with	h each other			(d)	Do not interse	ct	1	
8	Find the matrix X	if 2X + (1)	3 = (5 7			1	1	
	11	5	7)	95)				-	
	(a) (-2 -2)	(b)	2 2		(C)	1 2	(d)	2 1	
	(2 -1)	10.00	[2 -1]		1	2 21	1	2 2	
1	(a) huporbolo	juadratic equ	Lation is	always	103	Cint	1.4.15		
		M = 50	O IF AL M		then	Circle	(a)	Parabol	a
	(a) 40°	(h)	700	IN - AFGE	(c)	ane value of Z P	(d)	1100	
	If slope of the line	PO is 1/15	then slop	e of the pr	rpenc	licular bisector	of PO	ie	No. and A.
	(a) √3	(b)	-13	C OI HIC PC	(c)	1/52	(d)	0	
) .	tane cosec ² e - tar	nθ is equal	to			15	(4)		
	(a) sec θ	(b)	cot ² 0		(c)	sin 0	(d)	cot 0	
1.	The angle of eleva	ation of a clo	ud from t	the a point	h mel	ers above a lak	e isβ.	The angl	e of depression of its
	reflection in the la	ke is 45°, th	e height	of loaction	of the	e cloud from the	lake i	S	a service sheets
	(a) $h(1+\tan\beta)$	(b)	h(1-tan	<u>B)</u>	(c)	h tan (45° - B)	(d)	none of	these
	1 - tan β		1 + tan	β	(-)	incan (ic p)	(0)	none er	
	If the radius of the	base of a ri	ght circul	ar cylinder	is ha	lved keeping the	e same	e height, t	then the ratio of the
	volume of the cylin	ider thus ob	tained to	the volume	e of or	riganal cylinder	is		
	(a) 1:2	(b)	1:4		(C)	1:6	(d)	1:8	
5.	Variance of first 20	natural nun	nbers is		(0)	22.05	(d)	20	
	(a) 32.25 Drobobility of the o	(D)	44.25		(c)	33.20	(a)	30	
	Probability of the s	ure event is	0		(0)	4	(d)	2	
k.	(a)	(0)	U		PAR	T-B	(4)	-	
k		estions IC	uestion	No. 28 is	com	pulsorvl.			10x2=20
	Anewor any 10 m		103. Whi	ich of the f	ollowi	ng sets are rela	tions f	rom A to	B?
/	Answer any 10 qu	$\mathbf{D} \mathbf{D} \mathbf{B} = (\mathbf{I} \mathbf{I})$			3 1) (4,12)}			
	Let $A = \{3, 4, 7, 8\}$ a $B = \{(3, 7), (4, 7)\}$	(7, 10), (7, 10), (8)	3, 1)}	1) $R_{-} = \{(.,,,,,,,,$	1 1 1 1 1 1				
	Answer any 10 qu Let $A = \{3, 4, 7, 8\}$ a I) $R_1 = \{(3, 7), (4, 7)\}$ Determine whether	(7, 10), (7, 10), (8)	3, 1)} iven belo	ii) $R_2 = \{(x = x + y) \in \mathbb{R}^n \}$	nt fund	ctions. Give reas	son for	your ans	wers concerning
i d'	Answer any 10 qu Let $A = \{3, 4, 7, 8\}$ a I) $R_{1} = \{(3, 7), (4, 7)$ Determine whether each graph.	the graph g	3, 1)} iven belo	ii) R ₂ = {(() w represent	nt fund	ctions. Give reas	son for	your ans	wers concerning
	Answer any 10 qu Let $A = \{3, 4, 7, 8\}$ a I) $R_1 = \{(3, 7), (4, 7)$ Determine whether each graph.	ind B = {1,7, 7), (7, 10), (8 the graph g i)	8, 1)} iven belo	ii) $R_2 = \{(i \\ w represent ii)$	nt fund	ctions. Give reas	son for	your ans	wers concerning
- Contraction	Answer any 10 qu Let $A = \{3, 4, 7, 8\}$ a I) $R_1 = \{(3, 7), (4, 7)\}$ Determine whether each graph.	ind B = {1,7, 7), (7, 10), (8 the graph g i)	8, 1)) iven belo	ii) R ₂ = {(. w represent	nt fund	ctions. Give reas	son for	your ans	wers concerning
- All	Answer any 10 qu Let $A = \{3, 4, 7, 8\}$ a I) $R_{1} = \{(3, 7), (4, 7)\}$ Determine whether each graph.	ind $B = \{1, 7, 7\}, (7, 10), (8$ the graph g i)	3, 1)} iven belo	ii) R ₂ = {(.	t fund	ctions. Give read	son for	your ans	wers concerning

18. If $1^3 + 2^3 + 3^3 + \dots + k^3 = 44100$ then find $1 + 2 + 3 + \dots + k$.

CH/10/Mat/1 wtsteam100@gmail.com

www.waytosuccess.org

18	Find the LCM of 5y and put	2 24							
- 50	If a matrix has 20 stemperts	- 200							
21	A man poes the due and	what are	me possibl	e brders li	Can have?	What if it ha	s 8 eleme	rea.	
	Traine?	nd than 2	am due nor	th. Find th	e distance o	of this curren	(instich)	norn that se	areas .
25	Show Barris						- Proprietant -		
1 100	onow that the given points a	re collines	(-3, -4), (7.21 and (12 5)				
	A kite is flying at a height of	76m abov	e the grour	nd The atr	ing attaches	of the other bolton	the state of the	la ser	
	on the ground. The inclinatio	in of the s	tring with H	hourse ar	is 60 Find I	the burnered of	ann porare	y tied to a	point
	there is no slok in the string			no ground	and a start	ne lengin o	the string	ASSUTTIO	g mat
24	Find the volume of a cylinder	r whose h	night is 7m		-				~
25	If the total surface area of a	cone of ra	Him 7 cm	and whos	e base area	a is 250 m²		(-
25	If the range and the smallest	value of a	and a cm	15 /04 cm	, then find i	ts slant beig	PDE.	6	-
27	A die is colled and a coin is to	would stime	set of data	a are 36.8	and 13.4 re	spectively, t	hen find th	a lineost i	ratue.
Jui	the opic should all a courtie to	saed simi	uttaneously	Find the	probability t	that the die i	shows and	dd numb	in
20	Find the shows a nead.	a 16 8							1.4
20	rind the intercepts made by	the line 4	x - 9y + 36	=0 on the	coordinate	axes.	A 1		1
	a state of the sta			PART - C			1.	1	
111.	Answer any 10 questions o	nly [Q.NO	D: 42 is con	npulsory	1	1		1 10	
29	Let A = The set of all natura	Inumbers	less than	B B = The	set of all or	ime numbe	a line line	Acres	x0-20
	of even prime number. Verif	y that (A	B) × C =	AVELO	(B×C)	and house		10.0-1	ne-set
30	If $f(x) = 2x+3$, $g(x) = 1-2x$ and	dh(x) = 3	Prove th	(AAG) A	(DAC)				
31	If p. *1 x p. *2 x p. *3 x p. *4 = 1134	00 where		at 10 (g 0)	$(1) = (1 \circ g) \circ$	210			
	find the value of n n n n	and v v	P1 P2 P3 P	aer prime	is in ascend	ing order ar	Idix + X2 X2	, X4 are int	egers,
20	The product of three consect	ine terms	×3. ×4-						
areas	torms	ive terms	of a Geom	etric Progr	ession is 34	3 and their	sum is 91/	3. Find the	three
	Idinis.	1			1				
	(1 2 1)	2 -1		1	1 10	1			
33.	If A = and B = -	1 4 sl	now that (A	B)T = BTA		10 11 1			
	12 -1 1)	0 2/							
34	Find the GCD of the polynom	hials x3+x2	-x+2 and 2	x2-5x2+5x-	3				
35.	If one root of the equation 3x	$^{2} + kx + 8$	1=0 (having	a real real	the the car	are of the e	thar than I	and b	
36	State and prove Basic proport	tionality T	acoror /Th	glea Thoo	spine the aqu	ale of the c	uter uteri i	ING K.	
37	Show that the given points for	condity 11	leleenin	ales Theo	rem).				
31	Show that the given points to	(ma paral	leiogram.	1					
	A(2.5, 3.5), B(10, -4), C(2.5, -	-2.5) and I	D(-5, 5)	5	and the second second				
38.	A mobile phone is put to use	when the	battery po	ower is 10	0%. The pe	rcent of bal	tery powe	r 'y' (in de	cimal)
	remaining after using the mo	bile phone	e for x hour	's is assur	ned as y = -	0.25x + 1.			
	 Find the number of hour 	s elapsed	l if the batte	ery power i	s 100%.		Gen		
	ii) How much time does it i	take so th	at the batte	ery has no	power.	T	CONTRACTOR .		
20	$D = 1 + \sin\theta - \cos\theta$	2 1-	cos0			Sem /	111-2 percent		
39.	Porve that $1 + \sin\theta + \cos\theta$	1 - 1.	+ cos0			E.	from the the		
40	The frustum shaped outer po	rtion of the	table			120			
10.	lome has to be existed includ	ting the to	n part Fin	d the total	cost		R		
	lamp has to be painted include	any une to	p part r m		COSt		1		
100	or painting the lamp if the cos	st or paint	ing i sq. ci	11 15 12.	-	e materia and 1	Terefler de		
41.	In a study about viral fever, the	e number	of people a	inected in	a town were	e noted as i	-ind its sta	ndard dev	lation.
	Age in years	0-10	10-20	20-30	30-40	40-50	50-60	60-70	
	Number of people affected	3	5	16	18	12	7	4	
42.	A capsule is in the shape of a	cylinder w	ith two hen	nisphere s	tuck to eacl	h nel-its end	s. If the ler	ngth of the	entire
-	capsule is 12 mm and the dia	meter of	the capsule	e is 3 mm,	how much	medicine il	can hold.		
1			PA	RT-D					
IV	And the following sugar	lane						5	×8=16
14.	Answer the following quest	tons.		ananh En	al (1) under		/III wuther	- u=6	A0 10
43.	a) Draw the graph of xy = 2	4, x, y >0	Using the	graph in	a, (i) y whe	en x-s and	(II) x wrie	1 4-0	
			(OR)					
	b) Draw the graph of y=x2+x	-2 and he	nce solve	$x^{2}+x-2=0$.					
44.	a) Construct a triangle simi	lar to give	n triangle	PQR with	its sides ed	qual to 1/3	of the corre	esponding	j sides
	of the triangle POP/scale	factor 71	>1)	(OR)					
	b) Construct o triangle AD	OP Such	that OR -	5 cm / F	= 30° and	the altitude	e from P to	QR is of	length
	of Construct a thangle APC	an Such	inal on -	0 0111 21	un un	and an and a second second	contraction for Carl	CH/10/	Mat/2
	4.2 cm.							re-econicisatio	

2

SR-NKL SI	n ECOND RÉ	DHARMAPU	RI - DT ST - 2023	
10 Std Time: 3.00 Hrs	MA	THEMATICS	Reg No.	Marks : 100
	- x 3 6 - x	PART - I	e e	
Answer All the qu	estions.			14 X 1 = 14
1. If there are 1024	relations from a	set A = { 1, 2, 3,	4, 5 } to a set E	3. Then the
number of eleme	ents in B	8 - Japan		
a) 3 b) 2	c) 4	d) 8	
2. If $f: A \rightarrow B$ is a	bijective functior	n and if n (B)=7 th	en n(A) is equa	l to
a)7 b) 49	c) 1	d) 14	
3. If HCF of 65 and	117 is expressib	le in the form of 6	5m-117,then the	value of m is
a) 4 k) 2	c) 1	d) 3	
4. The value of (13-	+23+33++	15 ³) - (1+2+3+	+15)	
a) 14400 b	o) 14200	c) 14280	d) 14520	
5. Which of the foll	owing should be	e added to make	x^4 + 64 a perfe	ect square
a) $4x^2$ k	b) $16x^2$	c) $8x^2$	d) -8 x ²	2
6. If number of colu	umns and rows a	are not equal in a	matrix then it is	said to be a
a) diagonal mat	rix	b) rectangular m	atrix	9. je), é
c) square matrix	and a state	d) identity matrix	e ¹ - Norman ¹⁴	Bi (, ² 🖬
7. In ΔLMN . L =	$60^{\circ}.1 M = 50^{\circ}.$	If ALMN~AP	OR then the va	lue of R is
a) 40°	o) 70⁰	c)30°	d) 110º	
8 The area of triar	ale formed by r	points $(-4, 0)$ (0.	4) and (4,0) is	a E i i i i
	b) 16 cc	ite (-4, 0), (0,-	-4) and (4,0) is	
a) o sq.units	b) to sq.un	ns c) 4 sq unit	s d) None of	those
9. If slope of the lin	e PQ is $\frac{1}{\sqrt{2}}$ the	nen slope of the p	erpendicular bis	ector of PQ is
a) /2	$\sqrt{2}$	$c)\frac{1}{\overline{a}}$	d) 0	
a) 13	V- V3	$\sqrt[6]{\sqrt{3}}$	a) U	2 (19) Y (19)

10th - Maths -SR-NKL- Page-1

10.If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to $\sin^2\theta$ a) $\frac{-3}{2}$ $c) = \frac{1}{2}$ d) b) $\frac{3}{2}$ 11. The curved surface area of a height circular cone of leight 15 cm and base diameter 16 cm is d) 136 ^{*π*} cm ² c) 120 ^{*π*} cm ² a) 60 π cm² · b) 68 π cm² 12. A Spherical ball of radius r, units is melted to make 8 new identical balls each of radius r, units Then r, : r, is d) 1:4 c) 4:1 a) 2:1 b) 1:2 13. Variance of first 20 natural number is d) 30 c) 33.25 b) 44.25 a) 32.25 14. which of the following is incorrect? d) P(A) +P(A c) $P(\phi) = 0$ b) 0 < P(A) ≤ 1 a) P(A) >1 PART - II 10 X 2 = 20 Answer any 10 Questions. Question No.28 is compulsory. 15. Let A = { 1, 2, 3 } and {B = x/x is a prime number less than 10}. Find AXB and BXA 16.If A = { -2,-1,0,1,2 } and f: A \rightarrow B is an onto function defined by $f(x)=x^2+x+1$ then find B. 17. Solve 3x-2=0 (mod 11). 18. Find the LCM of (5x-10), (5x2-20). 19. Find the quaratic equation whose sum and product of roots are -9, 20 20. If $A = \begin{vmatrix} 1 & -7 & 9 \\ 3 & 8 & 2 \end{vmatrix}$ then find the transpose of A 6cm 21. In the Figure AD is the bisector of A If BD=4cm, DC=3cm B 4cm 3 cm AB=6cm, Find AC 22. If the three point (3,-1) (a,3) and (1,-3) are collinear. Find the value of a 23. Find the equation of a line passing throught the point (3,-4), and having slope 10th - Maths -SR-NKL- Page-2

4

wtsteam100@gmail.com

- 24. From the top of a rock $50\sqrt{3}$ m high Thes angle of depression of a car on the ground is observed to be 30° . Find the distance of the car from the rock.
- 25. Find the diameter of a sphere whose surface area is 154 m².
- 26. It the lange and the smallest value of a set of data area are 36.8 and 13.4 respectively, then find the largest value.
- 27. Two dice are rolled together Find the probability of getting a doublet?

PART - III

Answer any 10 Questions. Question No.42 is compulsory. 10 X 5 = 50 29. Let A = { $x \in w/x < 2$ }, B = { $x \in N/1 < x \le 4$ } and C={ 3, 5 } verify

Ax(BnC)=(AxB)n(AxC)

- 30. If $f(x)=x^2$, g(x)=2x and h(x)=x+4 slow that (fog) on = (fo)(goh)
- 31. In a G.P the 9th term is 32805 and 6th term is 1215. Find the 12th term
- 32. Rekha has 15 square colour papers of size 10 cm , 11 cm, 12 cm......24cm. How much area can be decorated with these colour papers ?

33. If $36x^4 - 60x^3 + 61x^2 - mx + n$ is a perfect square Find the values of m and n

34. If $A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ -4 & 2 \end{pmatrix}, C = \begin{pmatrix} -7 & 6 \\ 3 & 2 \end{pmatrix}$ verify that A(B+C)=AB+AC.

35. State and prove angle bisecetor theroram .

- 36.A triangular slaped glass of with vertices at A=(-5,-4), B=(1, 6) and C = (7, -4) has to be painted. It one bucket of paint covers 6 square feet, how many buckels of paint will be required to paint the whole glass if only one coat of paint is applied.
- 37. A (-3, 0) B (10, -2) and C (12, 3) are the vertices of a triangle ABC. Find the equation of the altitude through A.
- 38. If $\sin\theta(1+\sin^2\theta) = \cos^2\theta$ then prove that $\cos^6\theta 4\cos^4 + 8\cos^2\theta = 4$
- 39. The radius and height of cylinder are in the ratio 5 :7 and its curred surface area is 5500 sq cm Find its radius and height

10th - Maths -SR-NKL- Page-3

- 40.A solid sphere of radius 6 cm is melted into a hollow cylinder of uniform thickness. If the external radius of the base of the cylinder is 5 cm and its height is 32 cm, then find the thickness of the cylinder
- 41. The marks scored by 10 students in a class test are 25, 29, 30,33,35,37,38,40,44, 48 Find the standard deviation.
- 42. There unbiased coins are tossed once. Find the probability of getting at must 2 tails or atleast 2 heads.

PART - IV

Answer the following.

43.a) Construct a $\triangle PQR$ such that $QR = 5cm \lfloor P = 30^{\circ}$ and the altitude from P to QR of length 4.2 cm

(OR)

b) Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the tangents PA and PB to the circle and measure their lengths.

44. a) Draw the graph of $y = x^2 - 4$ and hence solve $x^2 - x - 12 = 0$

(OR)

- b) Graph the following linear function $y = \frac{1}{2} x$ Identify the constant of variation and verifty it with the graph. Also find y when x=9ii) find x when y = 7.5
 - B.SUGADEV.M.SC., B.Ed. MATHEMATICS

4.8148406242

10th - Maths -SR-NKL- Page-4

The property of the imposite state states and

 $2 \times 8 = 16$

MAYILADUTHURAI DISTRICT - Common Revision Test - 2 (2023)195

10 - Mathematics - District Level Revision Test -2 (2023)

10th Standard

Maths

Date : 06-Feb-23
Draw Diagrams whenever necessary
Reg.No. : Date : 06-Feb-23
Rough Works may be done at the bottom of answer sheets

Exam Time : 03:15:00 Hrs

Choose The Best Answer

1) If there are 1024 relations from a set A = $\{1, 2, 3, 4, 5\}$ to a set B, then the number of elements in B is

(a) 3 (b) 2 (c) 4 (d) 8

The probability of an impossible event is _____

(a) 0 (b) 1 (c) $\frac{1}{2}$ (d) Not exists

3) The two tangents from an external points P to a circle with centre at O are PA and PB. If $\angle APB = 70^{\circ}$ then the value of $\angle AOB$ is

(a) 100° (b) 110° (c) 120° (d) 130°

4) The slope of the line joining (12, 3), (4, a) is $\frac{1}{8}$. The value of 'a' is

(a) 1 (b) 4 (c) -5 (d) 2

5) If $x = a \tan \theta$ and $y = b \sec \theta$ then

(a) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (b) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (d) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ ⁶⁾ Find the matrix X if $2X + \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 9 & 5 \end{pmatrix}$ (a) $\begin{pmatrix} -2 & -2 \\ 2 & -1 \end{pmatrix}$ (b) $\begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$

7) If (x - 6) is the HCF of $x^2 - 2x - 24$ and $x^2 - kx - 6$ then the value of k is (a) 3 (b) 5 (c) 6 (d) 8

Sum of deviations of a variable from its mean is always _____

Total Marks: 100

14 x 1 = 14

(a) 0 (b) 1 (c) 2 (d) 5

9) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is

- (a) 1:2 (b) 1:4 (c) 1:6 (d) 1:8
- 10) Let f and g be two functions given by f = {(0,1), (2,0), (3,-4), (4,2), (5,7)} g = {(0,2), (1,0), (2,4), (-4,2), (7,0)} then the range of f o g is
- (a) $\{0,2,3,4,5\}$ (b) $\{-4,1,0,2,7\}$ (c) $\{1,2,3,4,5\}$ (d) $\{0,1,2\}$

wtsteam100@gmail.com

- 11) If \triangle ABC is an isosceles triangle with \angle C = 90° and AC = 5 cm, then AB is
- (a) 2.5 cm (b) 5 cm (c) 10 cm (d) $5\sqrt{2}$ cm

12) An A.P. consists of 31 terms. If its 16th term is m, then the sum of all the terms of this A.P. is

(a) 16 m (b) 62 m (c) 31 m (d) $\frac{31}{2}$ m

13) A straight line has equation 8y = 4x + 21. Which of the following is true

(a) The slope is 0.5 and the y intercept is 2.6

(b) The slope is 5 and the y intercept is 1.6

(c) The slope is 0.5 and the y intercept is 1.6

(d) The slope is 5 and the y intercept is 2.6

14) The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is

(a) $\frac{9\pi h^2}{8}$ sq.units (b) $24\pi h^2$ sq.units (c) $\frac{8\pi h^2}{9}$ sq.units (d) $\frac{56\pi h^2}{9}$ sq.units 10 x 2 = 20 Answer any 10

Question Number 28 is Compulsory

15) Check whether AD is bisector $\angle A$ of $\triangle ABC$ in each of the following AB = 5cm, AC = 10cm, BD = 1.5cm and CD = 3.5cm

16) Determine the quadratic equations, whose sum and product of roots are -9,20

17) A man has 532 flower pots. He wants to arrange them in rows such that each row contains 21 flower pots. Find the number of completed rows and how many flower pots are left over.

18) Find the angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of a tower of height $10\sqrt{3m}$

19) Write the sample space for selecting two balls from a bag containing 6 balls numbered 1 to 6 (using tree diagram).

20) Represent the function $f = \{(1,2), (2,2), (3,2), (4,3), (5,4)\}$ through

(i) an arrow diagram

(ii) a table form

(iii) a graph

21) If P(A) = 0.37, P(B) = 0.42, $P(A \cap B) = 0.09$ then find P(AUB).

22) What is the remainder when $3^{209} + 5^9$ is divided by 8?

23) Find the sum of the following 3,7,11....up to 40 terms

24) What happens to the volume of the cylinder with radius r and height h, when its

(a) radius is halved (b) height is halved

25) If A = $\begin{vmatrix} \sqrt{5} & 2 \\ \sqrt{3} & -5 \end{vmatrix}$ then find the transpose of -A.

26) The length of a tangent from a point ar a distance of 5 cm from the center of the circle is 4 cm. Find the radius of the circle

wtsteam100@gmail.com

27) Find the equation of a straight line passing through the mid-point of a line segment joining the points (1, -5), (4, 2) and parallel to: X axis

28) Let $f(x, y) | x, y \in N$ and y = 2x. be a relation on \mathbb{N} . Find the domain, codomain and range. Is this relation a function?

Answer any 10

 $10 \ge 5 = 50$

Question Number 42 is Compulsory

29) Find the GCD of the following by division algorithm $2x^4 + 13x^3 + 27x^2+23x + 7$, $x^3 + 3x^2 + 3x + 1$, $x^2 + 2x + 1$

30) State and Prove - Angle Bisector Theorem

31) From the top of a tree of height 13 m the angle of elevation and depression of the top and bottom of another tree are 45° and 30° respectively. Find the height of the second tree.($\sqrt{3}$ = 1.732)

32) Final the probability of choosing a spade or a heart card from a deck of cards.

33) Find the equation of a straight line Passing through (1, -4) and has intercepts which are in the ratio 2:5

34) Find the value of k, such that f o $g = g \circ f$

f(x) = 3x + 2, g(x) = 6x - k

35) A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M) and an Executive Officer (E). The company provides Rs.10,000, Rs.25,000, Rs.50,000 and Rs.1,00,000 as salaries to the people who work in the categories A, C, M and E respectively. If A_1 , A_2 , A_3 , A_4 and A_5 were Assistants; C_1 , C_2 , C_3 , C_4 were Clerks; M_1 , M_2 , M_3 were managers and E_1 , E_2 were Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram.

36) If a, b, c are three consecutive terms of an A.P. and x, y, z are three consecutive terms of G.P then prove that $x^{b-c} \ge y^{c-a} \ge z^{a-b} = 1$

37) Priya earned Rs.15,000 in the first month. Thereafter her salary increased by Rs 1500 per year. Her expenses are Rs.13,000 during the first year and the expenses increases by Rs.900 per year. How long will it take for her to save Rs.20,000 per month

38) If $9x^4 + 12x^3 + 28x^2 + ax + b$ is a perfect square, find the values of a and b.

39) Show that the given points form a parallelogram : A(2.5, 3.5) , B(10, - 4), C(2.5, -2.5) and D(-5, 5)

40)
$$\begin{bmatrix} \mathbf{3} & \mathbf{1} \end{bmatrix}$$
 show that $A^2 = 5A + 7\mathbf{I}_2 = 0$

If $A = \begin{bmatrix} -1 & 2 \end{bmatrix}$ show that $A^2 - 5A + 7I_2 = 0$

41) Two dice are numbered 1,2,3,4,5,6 and 1,1,2,2,3,3 respectively. They are rolled and the sum of the numbers on them is noted. Find the probability of getting each sum from 2 to 9 separately.

42) The frustum shaped outer portion of the table lamp has to be painted including the top part. Find the total cost of painting the lamp if the cost of painting 1 sq.cm is Rs.2.

Answer the Follwoing

⁴³⁾ a) Draw the graph of $y = x^2 + 3x + 2$ and use it to solve $x^2 + 2x + 1 = 0$

b) A garment shop announces a flat 50% discount on every purchase of items for their customers. Draw the graph for the relation between the Marked Price and the Discount. Hence find

i. the marked price when a customer gets a discount of Rs.3250 (from graph)

ii. the discount when the marked price is Rs.2500.

⁴⁴⁾ a) Construct a \triangle ABC such that AB = 5.5 cm, \angle C = 25° and the altitude from C to AB is 4 cm.

^{b)} Draw a circle of radius 3 cm. Take a point P on this circle and draw a tangent at P.

(OR)

www.waytosuccess.org

WAY TO SECUESS

COMMON	SECOND	REVISION	TEST - 2023	
--------	--------	----------	-------------	--

COMINICIA	BECONDICE	WIGHCH I LOT	
Rampet.	Standa	rd X Reg	
District	MATHEM	ATICS	
Time : 3.00 hrs I. Choose the correct and 1. The range of the relation	Part- swer: $R = I(x + x^2 / x)$ is a	nrime number less t	Marks : 100 14 x 1 = 14
a) {2,3,5,7} b) {	2,3,5,7,11} c) {4,9,25,49,121}	d) {1,4,9,25,49,121}
2. If $f(x) = 2x^2$ and $g(x) = \frac{1}{2}$, then fog is		and the second
3	2		and the second second
a) $\frac{1}{2x^2}$ b)	2 C	$\frac{2}{\alpha v^2}$	d) $\frac{1}{6x^2}$
3. The sum of the exponent	ts of the prime fac	tors in the prime fact	orization of 1729 is
a) 1 b) 2	Marsh Hic) 3	d) 4
4. The value of (1 ³ + 2 ³ + 3 ³	$3 + \dots + 15^{3}) - (1)$	1 + 2 + 3 + 15) is	
a) 14400 b) 1 5 The I CM of a ^k a ^{k+3} a ^{k+5}	4200 C) 14280	d) 14520
a) a ^{k+9} b) a	k c) a ^{k+6}	d) a ^{k+5}
6. Which of the following ca	in be calculated fr	rom the given matrice	s?
$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$			
i) A ² ii) B	3 ² iii	AB	iv) BA
a) (i) and (ii) only b) (i	ii) and (iii) only c) (ii) and (iv) only	d) all of these
7. The two tangents from an	external points P	to a circle with centre	at O are PA and PB.
a) 100° b) 1	10° CAOBIS	1200	d) 130º
8. The point of intersection	of $3x - y = 4$ and	x + y = 8 is	.,
a) (5,3) b) (2	2,4) c) (3,5)	d) (4,4)
9. When proving that a quad	drilateral is a para	illelogram by using slo	opes you must find
 a) the slopes of two side b) the slopes of two pair 	of opposite sides	Call and the Party	
c) the lengths of all sides	5		
d) both the lengths and s	slopes of two side	S	
10. If the ratio of the height of	a tower and the le	ength of its shadow is ,	$\sqrt{3}$: 1, then the angle
of elevation of the sun ha	is measure		
a) 45° b) 3	0° C) 90° adjus is 5 cm and elan	d) 60° It height is 13 cm will
11. The height of a right circu	nar cone whose is	aulus is 5 cm and siar	it neight is 15 cm will
a) 12 cm b) 10	0 cm c) 13 cm	d) 5 cm
12. A spherical ball of radius r	1 units is melted to	o make 8 new identica	I balls each of radius
r_2 units. Then $r_1 : r_2$ is a) 2 1 b) 1	:2 0) 4 : 1	1) 1:4
	30 × 11 -2 -		wtstaam 1000 mm sil
ww.waytosuccess.org			wateam too@gman.com

X Maths

(2) 13 Which of the following is not a measure of dispersion? b) standard deviation

a) range d) variance

c) arithmetic mean d)

b) 1

The probability of getting a job for a person is x_3^2 . If the probability of not getting the job

is 2, Then the value of x is

a) 2

VAY TO SUCCESS

Part - II

013

II. Answer any 10 questions. (Q.No.28 is compulsory)

- 15 If B x A = {(-2.3), (-2.4), (0.3), (0.4), (3.3), (3.4)}, find A and B
- 16 Represent the function f = {(1.2), (2.2), (3.2), (4.3), (5.4)} through
 i) an arrow diagram ii) a table form iii) a graph
- 17 Find the next three terms of the sequence : 8, 24, 72. ...
- 19 Reduce the rational expressions to its lowest form
- 20 If $A = \begin{bmatrix} 5 & 4 & 3 \\ 1 & 7 & 9 \\ 3 & 8 & 2 \end{bmatrix}$ then find the transpose of A
- 21 Find the length of the tangent drawn from a point whose distance from the centre of a circle is 5 cm and radius of the circle is 3 cm.
- 22. Find the slope of the straight line 5y 3 = 0
- 23 Prove that tan20 sin20 = tan20 sin20
- 24. If the base area of a hemispherical solid is 154 sq metres, then find its total surface area.

25 If the ratio of radii of two spheres is 4 7 find the ratio of their volumes

- 28 Find the range and the coefficient of range of the following data 16 18 20 22 24 26 28
- 27. Two coins are tossed together. What is the probability of getting different faces on the coins?
- 28. Show that the points P(-1 5, 3), Q(6, -2), R(-3,4) are collinear.

Part - III

- III. Answer any 10 questions. (Q.No.42 is compulsory)
- 29 Given A = (1.2.3) B = (2.3.5), C = (3,4) and D = (1.3.5), check if (A - C) x (B - D) = (A x B) (C x D) is true?
- 30. If f(x) = 3x 2, g(x) = 2x + k and if fog = got, then find the value of k
- 31 Find the HCF of 396, 504, 636
- 32. Find the sum to n terms of the series 3+33 + 333 +, to n terms.

10 × 2 - 20

d) 15

10 x 5 = 50

(3)

X Maths

- 33. Find the square root of the polynomials by division method $37x^2 28x^3 + 4x^4 + 42x + 9$
- 34. If $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -1 \\ -1 & 4 \\ 0 & 2 \end{pmatrix}$, show that $(AB)^{T} = B^{T}A^{T}$
- 35. State and prove Angle Bisector Theorem.
- 36. Find the area of the quadrilateral whose vertices are at (-9,-2), (-8,-4), (2,2) and (1,-3)
- 37 Find the equation of the straight line which passes through the point of intersection of the lines 5x 6y = 1 and 3x + 2y + 5 = 0 and is perpendicular to the straight line 3x 5y + 11 = 0
- 38 Two ships are sailing in the sea on either sides of a Lighthouse. The angle of elevation of the top of the Lighthouse as observed from the ships are 30° and 45° respectively.

If the Lighthouse is 200 m high, find the distance between the two ships $\sqrt{3} = 1.732$

- 39. The internal and external diameter of a hollow hemispherical shell are 6 cm and 10 cm respectively. If it is melted and recast into a solid cylinder of diameter 14 cm, then find the height of the cylinder.
- 40 The amount of rainfall in a particular season for 6 days are given as 17.8 cm, 19.2 cm. 16.3 cm, 12.5 cm, 12.8 cm and 11.4 cm. Find its standard deviation.
- 41 Three unbiased coins are tossed once, find the probability of getting atmost 2 tails or atleast 2 heads
- 42. An industrial metallic bucket is in the shape of the frustum of a right circular cone whose top and bottom diameters are 10 cm and 4 m and whose height is 4 m. Find the curved and total surface area of the bucket.

Part - IV

IV. Answer all the questions.

 $2 \times 8 = 16$

42: a) Construct a triangle APOR such that QR = 5 cm, ∠P = 30° and the altitude from P to QR is of length 4.2 cm.

(OR)

- b) Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from the point.
- 44. a) A company initially started with 40 workers to complete the work by 150 days. Later, It decided to fasten up the work increasing the number of workers as shown below.

Number of workers (x)	40	50	60	75
Number of days (y)	150	120	100	80

- Graph the above data and identify the type of variation.
- ii) From the graph, find the number of days required to complete the work if the company decides to opt for 120 workers?
- iii) If the work has to be completed by 200 days, how many workers are required?

b) Graph the quadratic equation and state their nature of solutions.

13

 $x^2 - 6x + 9 = 0$

C DELON

- E. Vikram M.Sc., B.Ed

Sivagangai COMMON SECOND REVISION TEST – 2023 Reg No : Standard X MATHEMATICS Time: 3.00 hrs. Marks: 100 Part - I I. Choose the correct answer: $14 \times 1 = 14$ 1. If there are 1024 relations from a set to A = {1,2,3,4,5} to a set B, then the number of elements in B is a) 3 b) 2 c) 4 d) 8 2. $f(x) = (x + 1)^3 - (x - 1)^3$ represents a function which is b) cubic c) reciprocal a) linear d) quadratic 3. If the HCF of 65 and 117 is expressible in the form of 65m - 117, then the value of m is a) 4 b) 2 c) 1 4. The value of (13 + 23 + 33 + + 153) - (1 + 2 + 3 + a) 14400 c) 14280 b) 14200 d) 14520 5. The solution of $(2x - 1)^2 = 9$ is equal to a) -1 d) none of these b) 2 6. $\frac{x^3}{x-y} + \frac{y^3}{y-x} = -1$ a) $x^3 + y^3$ b) $x^2 - y^2$ $x^{2} + xy + y^{2}$ d) $x^2 - xy + y^2$ 7. How many tangents can be drawn to the circle from a exterior point? a) one b) two c) infinite d) zero 8. The area of triangle formed by the points (-5,0), (0,-5) and (5,0) is b) 25 sq. units a) 0 sq.units c) 5 sq.units d) none of these 9. (2,1) is the point of intersection of two lines a) x - y - 3 = 0 3x - y - 7 = 0c) 3x + y = 3 x + y = 7b) x + y = 3; 3x + y = 7d) x + 3y - 3 = 0; x - y - 7 = 010. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure a) 45° b) 30° c) 90° d) 60° The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is $\frac{9\pi h^2}{2}$ sq.units b) 24πh² sq.units c) $\frac{8\pi h^2}{2}$ sq.units d) $\frac{56\pi h^2}{2}$ sq.units 12. The probability of getting a job for a person is $\frac{x_3}{3}$. If the probability of not getting the job is $\frac{2}{3}$, then the value of x is a) 2 b) 1 c) 3 d) 1.5

www.waytosuccess.org

1

wtsteam100@gmail.com

13.	Va	riance of firs	st 20 natural number	IS		
	a)	32.25	b) 44.25	c) 33.25	d) 30	

14. The ratio of the volumes of cylinder, a cone and a sphere, if each has the same radius and same height is d) 3 1 2

(2)

a) 1:2:3 b) 2:1:3

Part - II

c) 3:1:4

 $10 \times 2 = 20$

- II. Answer any 10 questions. (Q.No.28 is compulsory) 15. Let X = {1,2,3,4} and Y = {2,4,6,8,10} and R = {(1,2), (2,4), (3,6), (4,8)}. Show that R in a function and find its domain, co-domain and range.
- Find k if fof(k) = 5 where f(k) = 2k 1
- 17. If 13824 = 2^a x 3^b then find a and b
- 18. Find the sum of 1³ + 2³ + 3³ + + 16³

19. If $A = \begin{bmatrix} \sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5 \end{bmatrix}$, then find the transpose of A.

- 20. Find the length of the tangent drawn from a point whose distance from the centre of a circle is 5 cm and the radius of the circle is 3 cm.
- 21. Show that the given points are collinear : (-3,-4), (7,2) and (12,5)
- 22. Find the equation of a straight line passing through (5,-3) and (7,-4)
- 23. Prove that $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc \theta + \cot \theta$
- 24. Find the top of a rock $50\sqrt{3}$ m high, angle of depression of a car on the grouped is observed to be 30°. Find the distance of the car from the rock.
- 25. The radius of a sphere increase by 25%. Find the percentage increase in its surface area.
- 26. If the circumference of a conical wooden piece 484 cm, then find its volume when its height is 105 cm.
- 27. What is the probability that a leap year selected at random will contain 53 Saturdays.
- 28. Find LCM : x3-27, (x-3)2, x2-9

Part - III

III. Answer any 10 questions. (Q.No.42 is compulsory)

 $10 \times 5 = 50$

29 Let $A = \{x \in W | x < 2\}$, $B = \{x \in N | 1 < x \le 4\}$ and $C = \{3,5\}$, verify that $A \times (B \cup C) = (A \times B) \cup (A \times C)$

30. Let $f : A \rightarrow B$ be a function defined by $f(x) = \frac{x}{2} = 1$, where

A = {2,4,6,10,12}, B = {0,1,2,4,5,9} represent by (i) set of ordered pairs ; (ii) a table (iii) an arrow diagram (iv) a graph

- 31. Find the sum of all natural numbers between 300 and 600 which are divisible by 7.
- 32. Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm 24 cm. How much area can be decorated with these colour papers?

- 33. $ax^4 + bx^3 + 361x^2 + 220x + 100$ is a perfect square, find the values of a and b. x Maths
- 34. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, show that A^2 (a + d) $A = (bc ad) I_2$
- 35. State and prove Pythagoras theorem.
- 36. Let A(3,-4), B(9,-4), C(5,-7), D(7,-7). Show that ABCD is a trapezium.
- 37. Find the equation of a straight line joining the point of intersection of 3x + y + 2 =0 and x - 2y - 4 = 0 to the point of intersection of 7x - 3y = -12 and 2y = x + 3

38. Prove that
$$\tan^2 A - \tan^2 B = \frac{\sin^2 A - \sin^2 B}{\cos^2 A \cos^2 B}$$

- 39. Arul has to make arrangements for the accommodation of 150 persons for his family function. For this purpose, he plans to build a tent which is in the shape of cylinder surmounted by a cone. Each person occupies 4 sq.m of the space on ground and 40 cu.meter of air to breadthe. What should be the height of the conical part of the tent if the height of cylindrical par is 8 m?
- 40. The amount of rain fall in a particular season for 6 days are given as 17.8 cm. 19.2 cm, 16.3 cm, 12.5 cm, 12.8 cm and 11.4 cm. Find its standard deviation.
- 41. A card is drawn from a pack of 52 cards. Find the probability of getting a king or a heart or a red card.
- 42. Two ships are sailing in the sea on either side of the Lighthouse. The angles of depression of two ships as observed from the top of the Lighthouse are 60° and

45° respectively. If the distance between the ship is $200\left(\frac{\sqrt{3}+1}{\sqrt{3}}\right)$ metres, find the

height of the Lighthouse.

IV. Answer all the guestions.

Part - IV

$2 \times 8 = 16$

Construct a Δ PQR in which PQ = 8 cm, \angle R = 60° and the median RG from R 43. a) to PQ is 5.8 cm. Find the length of the altitude from R to PQ.

(OR)

- Draw two tangents from a point which is 5 cm away from the centre of a circle (d of diameter 6 cm. Also, measure the lengths of the tangents.
- A garments shop announces a flat 50% discount on every purchase of items 44. a) for their customers. Draw the graph for the relation between the Marked price and Discount. Hence find
 - the marked price when a customer gets a discount of ₹3250 (from graph)
 - the discount when the market prices ₹2500.

(OR)

Draw the graph of $y = x^2 - 4x + 3$ and use it to solve $x^2 - 6x + 9 = 0$ b)

²¹⁾ Find the square root of the following: $9x^2 - 24xy + 30x^2 - 40y^2 + 252 + 169^{\circ m}$

Ts10M

- 22) The perimeters of two similar triangles ABC & POR are resectively 36cm & 24 cm. If PO = 10, find AB
 - 23) The line through the points (-2,a) and (9, 3) has slop . Find the value of a.
 - 24) A tower stands vertically on the ground. From a point on the ground, which is 48m away from the foot of C the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower.

- 26) The volumes of two cones of same base radius are 3600cm³ and 5040cm³ Find the ratio of heights.
- 27) A die is rolled and a coin is tossed simultaneously. Find the probability that the die shows an odd number and the coin shows a head.
- 28) Show that the square of an odd integer is of the form 4g +1, for some integer g.

PART-III

Answer any ten of the following. Question Number 42 is compulsory.

- 29) Let A = { $x \in N/1 < x < 4$ }, B = { $x \in W/0 \le x < 2$ } and C = { $x \in N/x < 3$ } Then verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$ $6x + 1; -5 \le x < 2$
- 30) A function f: $[-5, 9] \rightarrow R$ is defined as follows: f(x) = $5x^2 - 1; 2 \le x < 6$

i)
$$f(-3) + f(2)$$
 ii) $\frac{2f(2) - f(6)}{f(4) + f(-2)}$

- 31) The sum of first n, 2n and 3n terms of an A.P are S_1 , $S_2 \otimes S_3$ respectively P.T $S_3 = 3(S_2 S_1)$. 32) If $(m+1)^{\text{th}}$ term of an A.P is twice the $(n+1)^{\text{th}}$ term, them prove that $(3m+1)^{\text{th}}$ term is twice the (m+n+1)th term.
- 33) There are 12 pieces of five, ten and twenty rupee currencies whose total value is Rs.105. When first 2 sorts are interchanged in their numbers its value will be increased by Rs.20. Find the no. of currencies in each sort.
- 34) If the roots of the equation $(c^2 ab)x^2 2(a^2 bc)x + b^2 ac = 0$ are real and equal. P.T either a = 0 (or) $a^3 + b^3 + c^3 = 3abc$.
- 35) PQ is a chord of length 8cm to a circle of radius 5cm. The tangents at P and Q intersect at a Point T. Find the length of the tangent TP.
- 36) Find the equation of the median and altitude of $\triangle ABC$ through A where the vertices are A(6,2), B(-5, -1) &(1, 9). Find the area of the quadrilateral formed by the points (-9, 0), (-8, 6), (-1, -2) and (-6, -3)
- 37)
- The horizontal distance between two buildings is 140m. The angle of depression of the top of the first building when seen from the top of the second building is 30°. If the height of the first building is 60m, find the height of second building ($\sqrt{3}$ = 1.732)
- 39) A toy is in the shape of a cylinder surmounted by a hemisphere. The height of the toy is 25cm. Find the total surface area of the toy if its common diameter is 12cm.
- 40) Water is flowing at the rate of 15km per hour through a pipe of diameter 14cm into a rectanglar tank which is 50m long and 44m wide. Find the time in which the level of water in the tanks will rise by 21cm.
- 41) The rainfall recorded in various places of five districts in a week are given below. Find its standard deviation.

Rainfall (in mm)	45	50	55	60	65	70
No. of places	5	13 .	4	9	5	4
the second se					And the second s	and the first of the

A passenger train takes 1hr morethan an express train to travel a distance of 240 km 42) from chennai to virudhachalam. The speed of passenger train is less than of an express train by 20km per hour. Find the average speed of both the trains.

PART - IV

Answer all the questions.

2×8=16

- 43) a) Draw $\triangle PQR$ such that PQ = 6.8cm, vertical angle is 50° and the bisector of the vertical angle meets the base at D where PD = 5.2 cm. (OR)
 - b) Construct a triangle similar to a given triangle PQR with its sides equal to 7/3 of the corresponding sides of the triangle PQR (Scale factor 7/3 > 1).
- Draw the graph of xy = 24, x, y > 0. Using the graph, find 44) a) (ii) x when y = 6(i) y when x = 3 and

www.wab) (Draw the graph of $y = x^2 + 3x + 8^2$ and use it to solve $x^2 + 2x + 1 = 0$.

10×5=50

 $3x - 4; 6 \le x \le 9$

UNOR.

M. Sri Ram

WAY TO SUCCESS Namakkal **SECOND REVISION TEST - 2023** SR-NKL Reg 10 Std MATHEMATICS No. Marks : 100 Time: 3.00 Hrs Namakkal district PART - I 14 X 1 = 14 Answer All the questions. 1. If there are 1024 relations from a set A = { 1, 2, 3, 4, 5 } to a set B. Then the number of elements in B br2 a) 3 If f: A → B is a bijective function and if n (B)=7 then n(A) is equal to d) 14 7 c) 1 b) 49 a)7 3. If HCF of 65 and 117 is expressible in the form of 65m-117, then the value of m is b) 2 c) 1 d) 3 × a)4 4. The value of (13+23+33+.....+153) - (1+2+3+... ...+15) c) 14280 d) 14520 b) 14200 a) 14400 10 5. Which of the following should be added to make $x^4 + 64$ a perfect square b) $16x^2$ c) $8x^2$ $^{\times}$ a) 4 x² d) $-8x^2$ 6. If number of columns and rows are not equal in a matrix then it is said to be a b) rectangular matrix a) diagonal matrix c) square matrix d) identity matrix 7. In ΔLMN $|L| = 60^{\circ}$, $|M| = 50^{\circ}$, If $\Delta LMN \sim \Delta PQR$ then the value of R is → a) 40° c)30° h1700 d) 110° 8. The area of triangle formed by points (-4, 0), (0,-4) and (4,0) is b) 16 sq.units c) 4 sq units d) None of those a) 0 sq.units 9. If slope of the line PQ is then slope of the perpendicular bisector of PQ is a) $\sqrt{3}$ b)/- 13 d) 0

10th - Maths -SR-NKL-Page-1

wtsteam100@gmail.com Scanned with OKEN Scanner

10.If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to d) $\frac{-2}{2}$ a) $\frac{-3}{2}$ 11. The curved surface area of a height circular cone of leight 15 cm and base diameter 16 cm is b) 68π cm² (c) 120π cm² (d) 136π cm² a) 60 π cm² 12. A Spherical ball of radius r, units is melted to make 8 new identical balls each of radius r, units Then r, : r, is c) 4:1 d) 1:4 b) 1:2 a) 2:1 13. Variance of first 20 natural number is c) 33.25 d) 30 a) 32.25 b) 44.25 14. which of the following is incorrect? b) $0 \le P(A) \le 1$ c) $P(\phi) = 0$ d) $P(A) + P(\overline{A}) =$ a) P(A) >1 PART - II 10 X 2 = 20 Answer any 10 Questions. Question No.28 is compulsory. 15. Let A = { 1, 2, 3 } and {B = x/x is a prime number less than 10}. Find AXB and BXA 16.If A = { -2,-1,0,1,2 } and f: A \rightarrow B is an onto function defined by $f(x)=x^2+x+1$ then find B. 17. Solve 3x-2=0 (mod 11). 18. Find the LCM of (5x-10), (5x²-20). 19. Find the guaratic equation whose sum and product of roots are -9, 20 4+102+x185022192+20=0 20. If $A = \begin{vmatrix} 1 & -7 & 9 \\ 3 & 8 & 2 \end{vmatrix}$ then find the transpose of A Scm 21 In the Figure AD is the bisector of LA If BD=4cm, DC=3cm B 4cm 3 cm AB=6cm, Find AC 22. If the three point (3,-1) (a,3) and (1,-3) are collinear. Find the value of a 23. Find the equation of a line passing throught the point (3, -4), and having slope 23.7 10th - Maths -SR-NKL-Page-2

20

wtsteam100@gmail.com

Scanned with OKEN Scanner

- 24. From the top of a rock $50\sqrt{3}$ m high Thes angle of depression of a car on the ground is observed to be 30° . Find the distance of the car from the rock.
- 25. Find the diameter of a sphere whose surface area is 154 m2 Eg. 7.8 (PN 2-78)
- 26. It the lange and the smallest value of a set of data area are 36.8 and 13.4 respectively, then find the largest value.
- 27. Two dice are rolled together Find the probability of getting a doublet?

PART - III

Answer any 10 Questions. Question No.42 is compulsory. 10 X 5 = 50 29. Let A = { $x \in w/x < 2$ }, B = { $x \in N/1 < x \le 4$ } and C={ 3, 5 } verify

Ax(BnC)=(AxB)n(AxC)(Ex1.1)(bii)(pN.6)

- 33. If $36x^4 60x^3 + 61x^2 mx + n$ is a perfect square Find the values of m and n(3.8)(3)
- 34. If $A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ -4 & 2 \end{pmatrix}, C = \begin{pmatrix} -7 & 6 \\ 3 & 2 \end{pmatrix}$ verify that $A(B+C) = AB + AC = 3 \cdot 72$ (PN 152) 35. State and prove angle bisecetor theroram (11) 72.
- 36.A triangular slaped glass of with vertices at A=(-5,-4), B=(1, 6) and C = (7, -4) $\overbrace{5'(1, 6)}^{P}$ has to be painted. It one bucket of paint covers 6 square feet, how many buckels (10) of paint will be required to paint the whole glass if only one coat of paint is applied (PN
- 37. A (-3, 0) B (10, -2) and C (12, 3) are the vertices of a triangle ABC. Find the equation of the altitude through A. $(5 \cdot 4)$ 7 (PN -235)
- 38. If $\sin\theta(1+\sin^2\theta) = \cos^2\theta$ then prove that $\cos^6\theta 4\cos^4 + 8\cos^2\theta = 4(6\pi)(9\pi)(255)$ 39. The radius and height of cylinder are in the ratio 5:7 and its curred surface area is 5500 sq cm Find its radius and height $(E_2 - 7 \cdot 1)(1)(p_2 + 27)$

10th - Maths -SR-NKL- Page-3

wtsteam100@gmail.com

Scanned with OKEN Scanner

- 40.A solid sphere of radius 6 cm is melted into a hollow cylinder of uniform thickness. If the external radius of the base of the cylinder is 5 cm and its height is 32 cm, then find the thickness of the cylinder $\int E \times 7.4 \ 7.$
- 41. The marks scored by 10 students in a class test are 25, 29, 30,33,35,37,38,40,44, 48 Find the standard deviation Eg 8.6 (PN 308)
- 42. There unbiased coins are tossed once. Find the probability of getting at must 2 tails or atleast 2 heads.

PART - IV

Answer the following.

43.a) Construct a \triangle PQR such that QR = 5cm [P = 30° and the altitude from P to QR of length 4.2 cm

(OR)

b) Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the tangents PA and PB to the circle and measure their lengths.

44. a) Draw the graph of $y = x^2 - 4$ and hence solve $x^2 - x - 12 = 0$

(OR)

b) Graph the following linear function $y = \frac{1}{2} x$ Identify the constant of variation and verify it with the graph. Also find y when x=9ii) find x when y = 7.5

22

www.waytosuccess.org

2

2

10th - Maths -SR-NKL-Page-

wtsteam100@gmail.com Scanned with OKEN Scanner

 $2 \times 8 = 16$

Timonattur		
mupattur	FIRST REVISION EXAM - 2023	

STD - X

TIME : 3.00 Hrs

MATHS

MARKS : 100

	PART - I	1.00	
Answer all the questions.	a de la c		14 x 1 = 14
The range of the relation $R = \{$	(x,x²) lx is a prime	number less than	13) is
a) { 2, 3, 5, 7 } b) { 2, 3, 5, 7 ,	, 11 } c) { 4, 9, 2	5, 49, 121} d) { 1, 4	, 9, 25, 49, 121 }
The domain of the function $f(x)$	= 1 / x (x + 1) is	_ <u>1</u> ^	1. N. K.
a) {0, -1} b) R - {0, -1]	c) R - {0}	d) R - {	-1)
The next term of the sequence	3/16, 1/8, 1/12, 1/1	3 is	
a) 1/24 b) 1/27	c) 2 / 3	d) 1/ 81	1.0
if 10th term of A.P. is 52 and 16th	term of A.P. is 82 th	en the nth term of th	his A.P. is
a) n + 2 b) 5n - 2	c)	5n + 2	d) 5n
Which of the following should b	e added to make x	+ 64 a perferct sq	uare
a) 4x ² b) 16x ²	c) 8x ²	d) -8x ²	
(-1)	54 - 14 C	x \	, S., and T
If A = (1 -2 3), B = 2 then A	+ B ^T = ?		(May Law -
(-3) (0)			1
a) (0 0 0) b) 0	c) (2 4 6)	d) not defined	
If in AABC is an isosceles triang	gle with $\angle C = 90^\circ$ ar	nd AC = 5 cm, then	AB is
a) 2.5 cm b) 5 cm	c) 10 cm	d) 5√2	cm
If A is a point on the Y axis who	se ordinate is 8 and	B is a point on the	X axis whose
abscissae is 5 then the equation	n of the line AB is		
a) 8x + 5y = 40 b) 8x	- 5y = 40 c) x	x = 8	d) y = 5
The area of quadrilateral forme	d by the points (-1,	1), (1, 1), (1, -1) an	d (-1, -1) is
a) 0 sq. units b) 4 s	q. units c) 2	25 sq. units	d) 1 sq. units
a cot θ + b cot θ = p and b cot θ	$+ a \cos \theta = q the$	en p ² - q ² is equal to)
a) a ² - b ² b) b ² - a ²	c) a ² + b ²	d) b - a	ni minten Niv ni so
The total surface area of a hem	i-sphere is how mu	ch times the square	e of its radius
a) π · . b) 4π	c) 3π d) 1	2π	
If the radius of the base of a rig	ht circular cylinder i	s halved keeping th	he same height, then
the ratio of the volume of the cy	linder thus obtained	to the volume of c	original cylinder is
h) 1 · /	c) 1 · 6 d)	1.8	
	The range of the relation $R = \{$ a) $\{2, 3, 5, 7\}$ b) $\{2, 3, 5, 7\}$ The domain of the function $f(x)$ a) $\{0, -1\}$ b) $R - \{0, -1\}$ The next term of the sequence a) $1/24$ b) $1/27$ if 10th term of A.P. is 52 and 16th a) $n + 2$ b) $5n - 2$ Which of the following should b a) $4x^2$ b) $16x^2$ If $A = (1 - 2 3)$, $B = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$ then $A \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}$ (0 0 0) b) $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ If in $\triangle ABC$ is an isosceles trians a) 2.5 cm b) 5 cm If A is a point on the Y axis who abscissae is 5 then the equatio a) $8x + 5y = 40$ b) $8x$ The area of quadrilateral forme a) 0 sq. units b) 4 s a cot $\theta + b$ cot $\theta = p$ and b cot θ a) $a^2 - b^2$ b) $b^2 - a^2$ The total surface area of a hem a) π b) 4π If the radius of the base of a rig the ratio of the volume of the cy	PART - 1 Inswer all the questions. The range of the relation $R = \{ (x,x^2) x \text{ is a prime} \\ a \} \{ 2, 3, 5, 7 \} b \} \{ 2, 3, 5, 7, 11 \} c \} \{ 4, 9, 29 \\ The domain of the function f(x) = 1 / x (x + 1) isa) \{ 0, -1 \} b) R - \{ 0, -1 \} c) R - \{ 0 \}The next term of the sequence 3/16, 1/8, 1/12, 1/10a) 1/24 b) 1/27 c) 2/3if 10th term of A.P. is 52 and 16th term of A.P. is 82 tha) n + 2 b) 5n - 2 c)Which of the following should be added to make x^4a) 4x^2 b) 16x^2 c) 8x^2If A = (1 - 2 3), B = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix} then A + B^T = ?a) (0 \ 0 \ 0 b) \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} c) (2 \ 4 \ 6)If in \triangle ABC is an isosceles triangle with \angle C = 90^{\circ} ara) 2.5 \text{ cm} c) 10 \text{ cm}If A is a point on the Y axis whose ordinate is 8 andabscissae is 5 then the equation of the line AB isa) 8x + 5y = 40 b) 8x - 5y = 40 c) 2The area of quadrilateral formed by the points (-1,a) 0 \text{ sq. units} b) 4 \text{ sq. units} c) 2a cot \theta + b cot \theta = p and b cot \theta + a cosec \theta = q thea) a^2 - b^2 b) b^2 - a^2 c) a^2 + b^2The total surface area of a hemi-sphere is how mutala) \pi b) 4\pi c) 3\pi d) 2If the radius of the base of a right circular cylinder isthe ratio of the volume of the cylinder thus obtained$	PART - 1 Inswer all the questions. The range of the relation $R = \{(x,x^2) \text{ lx is a prime number less than a)} \{2, 3, 5, 7, 1\} b) \{2, 3, 5, 7, 11\} c) \{4, 9, 25, 49, 121\} d) \{1, 4]$ The domain of the function $f(x) = 1 / x (x + 1)$ is a) $\{0, -1\}$ b) $R - \{0, -1\}$ c) $R - \{0\}$ d) $R - \{0\}$ The next term of the sequence 3/16, 1/8, 1/12, 1/18 is a) $1 / 24$ b) $1 / 27$ c) $2 / 3$ d) $1 / 81$ if 10th term of A.P. is 52 and 16th term of A.P. is 82 then the nth term of the a) $n + 2$ b) $5n - 2$ c) $5n + 2$ Which of the following should be added to make $x^4 + 64$ a perferct sq a) $4x^2$ b) $16x^2$ c) $8x^2$ d) $-8x^2$ If $A = (1 - 2 3)$, $B = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$ then $A + B^T = ?$ a) $(0 \ 0 \ 0)$ b) $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ c) $(2 4 6)$ d) not defined If in $AABC$ is an isosceles triangle with $\angle C = 90^\circ$ and $AC = 5$ cm, then a) 2.5 cm b) 5 cm c) 10 cm d) $5\sqrt{2}$ If A is a point on the Y axis whose ordinate is 8 and B is a point on the abscissae is 5 then the equation of the line AB is a) $8x + 5y = 40$ b) $8x - 5y = 40$ c) $x = 8$ The area of quadrilateral formed by the points $(-1, 1)$, $(1, 1)$, $(1, -1)$ and a) 0 sq. units b) 4 sq. units c) 25 sq. units a cot $0 + b$ cot $\theta = p$ and b cot $\theta + a$ cosec $\theta = q$ then $p^2 - q^2$ is equal to a) $a^2 - b^2$ b) $b^2 - a^2$ c) $a^2 + b^2$ d) $b - a$. The total surface area of a hemi-sphere is how much times the square a if the radius of the base of a right circular cylinder is halved keeping the radius of the base of a right circular cylinder is halved keeping the radius of the base of a right circular cylinder is halved keeping the the radius of the base of a right circular cylinder is halved keeping the the radius of the base of a right circular cylinder is halved keeping the the radius of the volume of the cylinder thus obtained to the volume of the cylinder thus obtai

10 - MATHS - PAGE 1

13. Variance of first 20 natural numbers is

d) 30

14. Kamalam went to play a lucky draw contest 135 tickets of the lucky draw were sold. If the b) 44.25 probability of kamalam winning is 1/9, then number of tickets bought by kamalam

c) 33.25

d) 20 c) 15 b) 10 a) 5

PART - II

$10 \times 2 = 20$

Answer any Ten Questions. Q.No. 28 is compulsory

- A. Write R as a subset of A x A. Also, find the domain and range of R.
- 16. Let f be a function from R to R defined by f(x) = 3x 5. Find the values of a and b given than

(a, 4) and (1,b) belong to f.

- 17. 'a' and 'b' are two positive integers such that a' x ba = 800. Find 'a' and 'b'
- 18. If 3+k, 18-k, 5k+1 are in A.P. then find k
- 19. Find the square root of the following expression. 144 a⁶ b¹² c¹⁰ 4 81 f¹² g⁴ h¹⁴
- 20. Find the sum and product of the roots of the following quadratic equation : $Kx^2 k^2x 2k^3 = 0$
- 21. A man goes 18m due east and then 24m due north. Find the distance of his current position from the starting point.
- 22. Find the area of a triangle formed by the points (5, 2), (3, -5) and (-5, -1)
- 23. Calculate the slope and y intercept of the straight line 8x 7y + 6 = 0
- 24. Prove that $\sec \theta \cos \theta = \tan \theta \sin \theta$
- 25. If the base area of a hemispherical solid is 1386 sq. meters, then its total surface area?
- 26. If the range and the smallest value of a set of data are 36.8 and 13.4 respectively, then find the largest value.
- 27. A die is rolled and a coin is tossed simultaneously. Find the probability that the die shows an odd number and coin shows a head.
- 28. From the top of a rock $50\sqrt{3}m$ high, the angle of depression of a car on the ground is observed to 30°. Find the distance of the car from the rock.

PART - III

Answer any Ten Questions. Q.No. 42 is compulsory

 $10 \times 5 = 50$

29. Find x if gff(x) = fgg(x), given f(x) = 3x + 1 and g(x) = x + 3.

30. Let f:A \rightarrow B be a function defined by f(x) = x / 2 - 1, where A = {2,4,6,10,12}, B={0,1,2,4,5,9}. Represent f by (i)set of ordered paris (ii) a table (iii) An arrow diagram

(iv) A graph

10 - MATHS - PAGE 2

- 31. A mother divides Rs.207 into three parts such that the amount are in A.P. and gives it to here three children. The product of the two least amounts than the children had Rs.4623. Find the amount received by each child.
- 32. Find the sum to 'n' terms of the series 7 + 77 + 777 +
- 33. Find the GCD of 6x3 30x2 + 60x 48 and 3x3 12x2 + 21x 18

34. If
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ -4 & 2 \end{bmatrix}$ $C = \begin{bmatrix} -7 & 6 \\ 3 & 2 \end{bmatrix}$ verify that A(B+C) = AB + AC.

- 35. State and prove the Basic proportionality theorem.
- 36. Find the equation of the median and altitude of ∆ABC through A where the vertices are A(6,2), B(-5,-1) and C (1, 9).
- 37. Two ships are sailing in the sea on either sides of a lighthouse. The angle of elevation of the top of the lighthouse as observed from the ships are 30° and 45° respectively. If the lighthouse is 200m high, find the distance between the two ships. ($\sqrt{3} = 1.732$)
- 38. A toy is in the shape of a cylinder surmounted by a hemisphere. The height of the toy is 25cm. Find the total surface area of the toy of its common diameter is 12cm.
- 39. An aluminium sphere of radius 12cm is melted to make a cylinder of radius 8cm. Find the height of the cylinder.
- 40. Find the co-efficient of variation of 24, 26, 33, 37, 29, 31
- 41. Two dice are rolled. Find the porbability that the sum of outcomes is (i) equal to 4 (ii) greater than 10 (iii) less than 13.
- 42. If -4 is a root of the equation $x^2 + px 4 = 0$ and if the equation $x^2 + px + q = 0$ has equal roots, find the values of p and q.

PART - IV

Answer all the Questions.

$2 \times 8 = 16$

- a) Construct a smilliar triangle to given triangle LMN with its sides equal to 4 / 5 of the corresponding sides of the triangle LMN. (Scale factor 4 / 5 < 1) (OR)
 - b) Take a point which is 11cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from that point.
- 44. a) Graph the following linear function y = 1 / 2x. Identify the constant of variation and verify it with the graph. Also (i) Find y when x = 9 (ii) Find x when y = 7.5 (OR)
 - b) Draw the graph of $y = 2x^2$ and hence solve $2x^2 x 6 = 0$.

10 - MATHS - PAGE 3

WAY TO SUCCESS Virudhunagar Virudhunagar District Common Examinations Virudhunagar District Common Examinations Virudhunagar 2023

Standard 10 MATHEMATICS

Time: 3.00 Hrs.

PART - I

- Note: i) Answer ALL the questions.
 - ii) Choose the correct answer from the four alternatives and write the option code and the corresponding answer.
 - 1) $A = \{a, b, p\}, B = \{2, 3\}, C = \{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is a) 8 b) 12 c) 20 d) 16
 - 2) If $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ is a function given by $g(x) = \alpha x + \beta$ then the value of α and β are

c) (-1, -2)

a) (-1, 2) b) (2, -1)

- 3) The sum of the exponents of the prime factors in the prime factorization of 1729 is a) 1 b) 2 c) 3 d) 4
- 4) The first term of an arithmetic progression is unity and the common difference is 4. How many terms of the A.P must be taken for their sum to be equal to 120?
- d) 9 b) 7 c) 8 a) 6 5) If (x-6) is the HCF of x²-2x-24 and x²-kx-6 then the value of k is d) 8 c) 6 b) 5 a) 3
- 6) Which of the following must be added to make x⁴+64 a perfect square? c) 16x d) -16x b) $-16x^{2}$ a) 16x²
- 7) In the figure ST || QR, PS = 2 cm and SQ = 3 cm then the ratio of the area of APQR to the area of APST is

d) 9:4 c) 4:9 b) 25:9 a) 25 : 4 8) A man walks near a wall, such that the distance between him and the wall is

- 10 units. Consider the wall to be the y-axis. The path travelled by the man is d) y = 0b) y = 10c) x = 0a) x = 10
- (2, 1) is the point of intersection of the straight lines
 - b) x+y = 3; 3x+y = 7a) x-y-3 = 0; 3x-y-7 = 0

c)
$$3x+y = 3$$
; $x+y = 7$
d) $x+3y-3 = 0$; $x-y-7 = 0$

10) A tower is 60m high. Its shadow is x metres shorter when the sun's altitude is 60° than when it has been 45° then x is equal to b) 25.36 m

d) 36.25 m

a) 34.64 m

26

www.waytonecess.org

wtsteam100@gmail.com

Marks: 100

14×1=14

d) (1, 2)

TTIAT	TO	OUT	ADD	-
WAI	10	SUC	(LEO)	0

V10M 11) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is d) 1:8 c) 1:6 b) 1:4 a) 1:2 12) The volume (in cm³) of the greatest sphere that can be cut off from a cylindrical 10g of wood of base radius 1 cm and height 5 cm is d) $\frac{20}{3}\pi$ b) $\frac{10}{3}\pi$ a) $\frac{4}{3}\pi$ c) 5π 13) If the standard deviation of x, y, z is p then the standard deviation of 3x+5, 3y+5, 3z+5 is d) 9p+15 a) 3p+5 b) 3p c) p+5 14) Kamalam went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of Kamalam winning is 1/9, then the number of tickets bought by Kamalam is d) 20 a) 5 b) 10 c) 15

PART-II

Note: i) Answer any TEN questions.

ii) Question No. 28 is compulsory.

15) Let A = $\{1, 2, 3\}$ and B = $\{x/x \text{ is a prime number less than 10}\}$ find A×B and B×A.

10×2=20

- 16) A Relation R is given by the set $\{(x, y) | y = x+3, x \in \{0, 1, 2, 3, 4, 5\}$. Determine its domain and range.
- Find the HCF of 340 and 412 using Euclids Division Algorithm.
- 18) Solve: $8x \equiv 1 \pmod{11}$

19) Find the excluded value of the polynomial $\frac{t}{t^2 - 5t + 6}$.

20) If α and β are roots of the quadratic equation $x^2+7x+10 = 0$ then find the value of $\alpha^3 - \beta^3$.

21) If $A = \begin{pmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{pmatrix}$ then find B-5A.

In the figure, ∆ABC is circumscribing a circle. Find the length of BC.

23) The line through the points (-2, a) and (9, 3) has slope -1/2. Find the value www.waytosuccess.org 27 wtsteam100@gmail.com

WAY TO SUCCESS V10M

- 24) Prove: $\frac{\sin A}{1 + \cos A} + \frac{\sin A}{1 \cos A} = 2 \operatorname{cosec} A$
 - 25) The radius of a spherical balloon increases from 12 cm to 16 cm as air being pumped into it. Find the ratio of the surface area of the balloons in the two cases.
 - 26) Find the range and co-efficient of range for the data 43.5, 13.6, 18.9, 38.4, 61.4, 29.8
 - 27) A coin is tossed thrice. What is the probability of getting two consecutive tails?
 - 28) The slant height of a frustum of a cone is 5 cm and the radii of its ends are 4 cm and 1 cm. Find its curved surface area.

PART-III

Note: i) Answer any TEN questions only. ii) Question No. 42 is compulsory.

10×5=50

29) A function f is defined by f(x) = 2x-3. (i) find $\frac{f(0) + f(1)}{2}$ (ii) find x such that

f(x) = 0 (iii) find x such that f(x) = x (iv) find x such that f(x) = f(1-x).

- 30) Prove (fog)oh = fo(goh) for the functions f(x) = x-4, $g(x) = x^2$ and h(x) = 3x-5.
- 31) The 13th term of an A.P is 3 and the sum of first 13 terms is 234. Find the sum of first 21 terms.
- 32) If a, b, c are three consecutive terms of an A.P and x, y, z are three consecutive terms of a G.P, then prove that x^{b-c} × y^{c-a} × z^{a-b} = 1.

33) If $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -1 \\ -1 & 4 \\ 0 & 2 \end{pmatrix}$ then verify $(AB)^{T} = B^{T}A^{T}$.

- State and prove Angle bisector theorem.
- 35) Find the equation of a straight line passing through (-3, 8) and whose sum of the intercepts on the co-ordinate axes is 7.
- 36) Find the equation of a straight line through the point of intersection of the lines 8x+3y = 18, 4x+5y = 9 and bisecting the line segment joining the points (5, -4) and (-7, 6).
- 37) A TV Tower stands vertically on the bank of a canal. The tower is watched from a point on the other bank directly opposite to it. The angle of elevation of the tower is 60°. From the another point 20m away from this point on the line joining this point to the foot of the tower, the angle elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal.
- 38) Calculate the weight of the hollow brass sphere if the inner diameter is 14 cm and thickness is 1mm, and whose density is 17.3 g/cm³.
- 39) A right circular cylindrical container of base radius 6 cm and 15 cm is full of ice cream. The ice cream is to be filled in cones of height 9 cm and base www.waytosuccess.org

to empty the container. 28

wtsteam100@gmail.com

V10M

4

- 40) The mean and standard deviation of 15 observations are found to be 10 and 5 respectively. On rechecking it was found that one of the observation with value 8 was incorrect. Calculate the correct mean and standard deviation if the correct observation value was 23.
- 41) From a well shuffled pack of 52 cards, a card is drawn at random. Find the probability of it being either a red king or a black queen.
- 42) Find the GCD of 6x³-30x²+60x-48 and 3x³-12x²+21x-18.

PART - IV

Note: Answer ALL the questions.

43) Draw a circle of diameter 6 cm. At a point L on it draw a tangent to the circle using the alternate segment theorem.

(OR)

Draw the $\triangle ABC$ of base 1 BC = 8 cm, $\angle A = 60^{\circ}$ and the bisector of $\angle A$ meets BC at D such that BD = 6 cm.

- 44) A bus is travelling at a uniform speed of 50 km/hr. Draw the distance + time graph and hence find
 - the constant of variation.
 - ii) how far will it travel in 11/2 hours.
 - iii) the time required to cover a distance of 300 km from the graph.

(OR)

29

Discuss the nature of solutions of the quadratic equation $x^2+2x+5 = 0$ using graph.

2×8=16

WAY TO SUCCESS COIMBATORE

CL	ASS 10		REG.NO	I	
		COMMON REVISION E	XAMINATION - F	EBRUARY / MARCH 2023	
		N	ATHEMATICS		
TIM	E: 3.00 H r s			MARKS:100	
Inst	tructions:				
fair	(i) Ct ness, inform	teck the question paper for f the Hall Supervisor immedi	airness of printing. ately.	If there is any lack of	
	(ii), L	se Blue or Black ink, to writ	e and underline an	d pencil to draw diagrams.	
	This	Ouestion Paper contains for	ir parts	145	
		Sector Contraction International Contraction	n parts.		
2	1079 L.		PART-I		
3	NOTE: (i) An	swer all the 14 questions.		14×1=14	
the a	(ii) C option code wit	boose the most suitable ansy h the correct answer.	ver from the given	four alternatives and write	
	(iii) Ea	ch question carries I mark.			- A.
12	Let $A = 21$	2.3.41 and B = 14.8.9.10	A function f	A B given hy	
	f = ((1, 4))	2, 8),(3,9),(4,10); is a		, b Buch of	
	(A) Many-	one function	(B) Identity	function	
	(C) One-to	-one function	(D) Into fui	nction	
2	Given Fi=	$I_{n}F_{2}=3$ and $F_{n+}F_{n+}F_{n+}F_{n+}$	then F/is		1
	(A)3	(B)5	(C)8	D)11	1
ŝ.,	If $A = 2^{+5} a$	nd B = $2^{n^2} + 2^{n^2} + 2^{n^2} + \dots + 2^{n^2}$	2º which of the fo	ollowing is true?	
	(A) B is 2*	more than A	(B) A and E	are equal	
	(C) B is lar	ger than A by I	(D) A is lar	ger than B by 1	7
4	The values	of a and b if $4x^4 - 24x^3 +$	76x 2 + ax +b is a	perfect square are	1
	(A) 100,120	(B) 10.12	(C) -120,10	0 (D) 12,10	
<u>6</u>	If number of	of columns and rows are r	not equal in a mai	trix then it is said to be a	
	(A) diagona	l matrix	(B) rectange	ılar mafrix	
	(C) square i	natrix	(D) identity	matrix 🖉	
Q	In a given f	igure ST QR, PS = 2 cm	and SQ = 3 cm. T	hen	
	the ratio of	the area of ΔPQR to the a	rea of APST is		
	(A) 25:4	(B) 25 : 7 (C) 25 : 1	I (D) 25:13	A A	
ŭ	The slope o	f the line joining (12.3).	(4.a) is 1. The va	alue of 'a' is	
	(A) I	(B) 4	(C)-5	(D) 2	
25	If slope of th	he line PQ is $\frac{1}{\sqrt{2}}$ then slop	e of the perpendi	cular bisector of PQ is	
		×3	1	(D) 0	201 24
	(A) 13	(B) - √3	L L LITE	1010	241
	(A) √3	$(B) - \sqrt{3}$		(0)0	2
8	(A) √3 If 5x = sec θ	(B) - $\sqrt{3}$ and $\frac{5}{x} = \tan\theta$ then x^{T}	$\frac{1}{2}$ is equal to	(0)0	-(

	A statement of the stat					
10	The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is					
(A	$\left(\frac{9\pi\hbar^2}{8}$ sq.units (B) 24 $\pi\hbar^2$ sq.units (C) $\frac{8\pi\hbar^2}{9}$ sq.units (D) $\frac{56\pi\hbar^2}{9}$ sq.units					
11.	The height and radius of the cone of which the frustum is a part are h units and r, units respectively. Height of the frustum is h units and radius of the smaller base is r_1 units. If $h \ge h_1 = 1 : 2$ then $r_2 : r_1$ is					
	(A) 1 : 3 (B) 1 : 2 (C) 2 : 1 (D) 3 : 1					
12	The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not					
	getting the job is then the value of x is					
	(A/2 (B) 1 (C) 3 (D) 1.5					
13.	If $B \times A = \{(3,1), (3,2), (3,3), (4,1), (4,2), (4,3)\}$ then A is (A) $\{3,4\}$ (B) $\{3,2,1\}$ (C) $\{1,2,3\}$ (D) $\{4,3\}$ The conductivity of an improve the equation					
C	(A) 1 (B) 2 (C) -1 (D) 0 PART - II					
Note	: Answer any 10 questions. QuestionNo.28 is compulsory. $10 \times 2 = 20$					
15.	Find $A \times B$, $A \times A = \{m,n\}$; $B \Rightarrow \emptyset$					
16.	Let $A = \{1, 2, 3, 4\}$ and $B = N$ Let $f : A \rightarrow B$ be defined by $f(x) = x^{3}$ then.					
	(i) find the range of f (ii) identify the type of function					
17,	A man has 532 flower pots. He wants to arrange them in rows such that each row contains 21 flower pots. Find the number of completed rows and how many flower pots are left over.					
18.	Find the number of terms in the A.P. 3, 6, 9, 12,, 111.					
19.	Find the excluded values of the expression, $\frac{y}{y^2-25}$					
20.	If a matrix has 18 elements, what are the possible orders it can have? What if it has 6 elements?					
21.	The length of the tangent to a circle from a point P , which is 25 cm away from the centre is 24 cm. What is the radius of the circle?					
22.	Find the slope of a line joining the given points (-6,1) and (-3,2)					
23.	Prove that $\sec \theta - \cos \theta = \tan \theta \sin \theta$					
24.	Find the angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of a tower of height 10 $\sqrt{3}$ m.					
25.	The curved surface area of a right circular cylinder of height 14 cm is 88 cm ² . Find the diameter of the cylinder.					

26. Find the range of the following distribution.

Age (in years)	16-18	15-20	20-22	22.24	24.26	26.39
Number of	0	4	8.	8.	3	3
students					· ·	

- 27. Find the intercepts made by the line 4x +3y -12 = 0 on the coordinate axes.
- 28. A coin is tassed thrice. What is the probability of getting two consecutive tasls?

PART III

Answer any 10 questions. Question No.42 is compulsary. 18 + 5 = 50

- 28. Let A = (x ∈ N (x ∈ A), B = (x ∈ W + 0 ≤ x + 2) and C = (x ∈ N (x < 3)). Then verify that: A = (B ∪ C) = (A + B). U (A + C).
- 30 B footes a group a familieur la chiminents forga himite gro h
- 31. If S. S. S. is, an the same of a terms of m A.P.s whose first terms are i.2.3. m and whose common differences are 1.3.5....(2m-1) respectively then show that s₁ + s₂ + s₃ + − + s_m = ¹/₂mn(mn + 1).
- Find the square neet of the following polynomial by division method 37 a² - 28 a² - 4a² + 42 a -6
- 34 The hypotenuse of a right angled triangle is 15 cm and its perimeter is 20/200 Find the length of the smallest side.
- 35. State and prove Bass: Proportionality Theorem.
- Find the equation of a straight line through the intersection of lines 5x =9y = 2.3x =2y = 10 and perpendicular to the line 4x =5x =12.0x0

37 From the top of a lighthouse, the angle of depression of two ships of the opposite index of it are observed to be 30° and old of the height of the lighthouse in h memory and the line youning the abaptionases through the foot of the lighthouse, show that the distance between themation is ⁴⁶/₂₇ is

- 38 An industrial metallic bucket is in the datape of the fraction of a right circular cone whose top and fortunet diameters are from and 4 m and whose height to 4 m. Find the correct and total metallic areas of the fraction.
- 39 A solid ophere of radius 6 on to extend only a hollow cylinder of ataliam thickness. If the extential fathers of the baseful fac cylinder is 5 cm and its height is 32 cm, then find the posterior strate cylinder.
- The marks scored by 10 million as class sent ate 25, 29, 50, 53, 35, 37, 38, 40, 44, 48. Find the standard deviation.

- I wo does are rolled once. Fight the probability of getting an even number on the 41 first die or a total of face new 4. Find the area of the qualificational whoresentices are at 4.7 (-9, 0); (-8, 6); (-1, -2) and line. PART-IN Answer all the questions 2 = 8 = 16 41.a) generated a manufe similar to a given triangle PQR with its sides equal to of the oprresponding sides of the triangle PQR (scale factor $\frac{1}{2} > 1$) See. Thraw a trillingle ABC of base BC = 3 cm, 2.4 = 507 and the bisector of 2.4 meets BC at D such that BD = 5 cm. 44. a) A school announces that for a certain competitions, the cash price will be distributed for all the participants equally as shown below No. of Participants(x) 2 4 6 8 10 Amount for each 130 90 50 45 18 Participant in fivi (i) Find the constant of variation. (ii) Graph the above data and hence, find how much will each participant get if the
- (ii) Graph the above data and hence, find how much will each participant get if a number of participants are 12.
- b) Draw the graph of y + 2x² 3 x -5 and hence solve 2x² 4x 4 + 0
- 104

Tim	mathem mathem	ATICS	Marks : 100
L	Choose the correct answer from the four alt	ernatives and write ti	te option code and the
	corresponding answer.		14 x 1 = 14
(Ě)	Let n (A) = m and n (B) = n then the total nun	nber of non empty relat	ions that can be defined
	from A to B is a) m ¹¹ b) n ¹¹¹ c) 2 ^{mn} -1	d) 2 ^{mn}	
6	$f(x) = (x + 1)^{2} - (x - 1)^{2}$ represents a function with	hich is	and the second of the
	Given E = 1 E = 3 and E = E + 4 E = 444	c) reciprocal	d) quadratic
20	a) 3 b) 5	c) 8	41.11
	a ¹ h ²	c) 0	al al
4.	The value of $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ + $\frac{1}{\sqrt{2}}$ is	a) a - b b) a + b	c) a ² b ² d) 1
	a = 0 $b = a$		The second
D	a) 3 b) 5	 b then the value of k is 	A A A
6.	Transpose of a row matrix is	0,0	
	a) unit matrix b) diagonal matrix	c) column matrix	d) row matrix
7.	If AABC is an isosceles triangle with $\angle C = 90^{\prime\prime}$	and AC = 5 cm, then A	Bis
	a) 2.5 cm b) 5 cm	c) 10 cm	d) 5√2 cm
8.	The two tangents from an external point P to a	circle with centre O are	PA and PB. If
	$(APR = 70^{\circ}$ then the value of (AOR) is		
	a) 100° b) 110°	c) 120°	d) 130º
9.	The slope of the line joining (12, 3), (4, a) is 1/	g. The value of a is	07.100
	a) 1 b) 4	c) -5	d) 2
10.	The equation of a line passing through the origi	n and perpendicular to	the line $7x - 3y + 4 = 0$
	is a) $7x - 3y + 4 = 0$ b) $3x - 7y + 4 = 0$ c)	3x + 7y = 0	d) $7x - 3y = 0$
H.S.	If $x = a$ tand and $y = b$ sec 0 then		
	$x^{1} = \frac{y^{2}}{x^{2}} = 1$ $x^{2} = 1$	$r(1) = \frac{r^2}{r} + \frac{r^2}{r} = 1$	$d1 \frac{x'}{y'} = \frac{y'}{y'} = 0$
	a^{2} b^{2} a^{2} a^{2} b^{2}	ar br	$a^2 b^2$
12.	The height of a right circular cone whose radius	is 5cm and slant heigh	t is 13cm will be
12	a) 12 cm b) 10 cm	up of modeling clay A (hild reshanes it in the
13.	form of a sphere then the radius of the sphere	ls	and readyrea is in the
	a) 24 cm b) 12 cm	c) 6 cm	d) 48cm
14.	If a letter is chosen at random from the English a	alphabets {a, b, c,	z} then the probability
	12	1	23 3
	that the letter chose precedes x a) $\frac{1}{13}$	b) 13	c) $\frac{1}{26}$ c) $\frac{1}{26}$
	Answer any 10 nuestions, O.No. 28 is comput	Isory.	10 X 2 = 20
15	$I(B \times A = \{(-2, 3), (-2, 4), (0, 3), (0, 4), (3, 3)\}$	(3, 4) find A and B.	10/100 000
16.	Let f be a function from R to R defined by f (x)	= 3x - 5. Find the val	ues of a and b given that
	(a, 4) and (1, b) belong to f.		
17	Find the least number that is divisible by the fi	rst ten natural numbers	
18	Find the sum of $1^3 + 2^3 + 3^3 + \dots$ 16		
	1	1p+2	
3	Find the excluded value of the expression δp :	+13p+5	
	(57 -1)		
20	If $A = -\sqrt{5} + 2$ then find the transpose of	-A.	
-	13 -5		and the second sec
	A State of the second s	2RM 11	A ANTIALD PAGE -1

- 21. Check whether AD is bisector of ∠4 of ABC in the following. AB = 5 cm, AC = 10 cm, BD = 1 5 cm and CD = 3.6 cm.
- 22. Show that the points (-3, -4), (7, 2) and (12, 5) are collinear.
- 23. Show that the straight lines x 2y + 3 = 0, 6x + 3y + 8 = 0 are perpendicular.

24. Prove that
$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} = \sec\theta + \tan\theta$$

- 25 Find the diameter of a sphere whose surface area is 154m²
- 26 Find the range and co-efficient of range of the following data. 25, 67, 48, 53, 44, 39, 18
- 27 A coin is tossed thrice. What is the probability of getting two consecutive tails.
- 28 A cone of height 24cm is made up of modeling day. A child reshapes it in the the form of a cylinder of same radius as cone. Find the height of the cylinder.

Answer any 10 questions. Q.No. 42 is compulsory.

- 29. Let $f : A \rightarrow B$ be a function defined by $f(x) = \frac{x}{2} 1$, where $A = \{2, 4, 6, 10, 12\}$, $B = \{0, 1, 2, 4, 5, 9\}$. Represent f by () set of ordered pairs (ii) a table (iii) an arrow diagram (v) a graph
- 30 If f(x) = 2x + 3, g (x) = 1 2x and h(x) = 3x prove that fo(goh) = (fog)oh.
- 31. Find the sum of all natural numbers between 300 and 600 which are divisible by 7.
- 32. The sum of squares of first n natural numbers is 285 and the sum of cubes of first n natural numbers is 2025, then find the value of n.
- 33. Find the square root of $x^4 12x^3 + 42x^2 36x + 9$.
- 34. A ladder 17 feet long is leaning against a wall. If the ladder, vertical wall and the floor from the bottom of the wall to the ladder form a right triangle, find the height of the wall where the top of the ladder meets if the distance between bottom of the wall to bottom of the ladder is 7 feet less than the height of the wall.
- 35. State and prove Basic proportionality theorem.
- 36. Find the area of the quadrilateral formed by the points (8, 6), (5, 11), (-5, 12) and (-4, 3).
- A straight line AB cuts the co ordinate axes at A and B. If the mid - point of AB is (2, 3).
 Find the equation of AB.

38. From the top of a tower 60m high, the angle of depression of the top and bottom of a vertical lamp post are observed to the 38° and 60° respectively. Find the height of the lamp post.

 $(\tan 38^\circ = 0.7813, \sqrt{3} = 1.732)$

- If the radii of the circular ends of a frustrum which is 45cm high are 28cm and 7cm, find the volume of the frustrum.
- 40. The scores of a cricketer in 7 matches are 70, 80, 60, 50, 40, 90, 95. Find the standard deviation.
- Two dice are rolled once. Find the probability of getting an even number on the first die or a total of face sum 8.

L If
$$A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$$
 show

 $2 \times 8 = 16$

10 X 5 = 50

43. a) Draw two tangents from a point which is 10cm away from the centre of a circle of radius 5cm. Also measure the length of the tangents. (OR) b) Draw a triangle ABC of base BE 8 cm,

 $\angle A = 60^{\circ}$ and the bisector of $\angle A$ meets BC at D such that BD = 6cm.

that $A^2 - 5A + 7I_2 = 0$.

- a) Graph the following linear function y = 1/2 x. Identify the constant of variation and verify it with the graph. Also i) find y when x = 9. ii) find x when y = 7.5. (OR)
 - b) Draw the graph of $y = x^2 5x 6$ and hence solve $x^2 5x 14 = 0$.

2RM 10 BOOT BLD PAGE -2

COMMON SECOND REVISION TEST - 2023

Std - X

Time : 3.00 Hours

MATHEMATICS

Marks: 100

Part - A

 Answer all the questions. Choose the most suitable answer from the given four alternatives and write the option code with the corresponding answer: 14 x 1 = 14

c) $\frac{2}{9x^2}$

- 1. If $f(x) = 2x^2$ and $g(x) = \frac{1}{3x}$ then fog is
 - a) $\frac{3}{2x^2}$ b) $\frac{2}{3x^2}$
- 2. In a G.P. if $t_1 = \frac{1}{5}$ and $t_2 = \frac{1}{25}$ then the common ratio is
 - a) $\frac{1}{5}$ b) 5 c) 25 d) $\frac{2}{5}$

3. The value of a and b if 4x⁴ - 24x³ + 76x² + ax + b is a perfect square are
a) 100, 120
b) 10, 12
c) -120, 100
d) 12, 10

 In a ∆ABC, AD is the bisector of ∠BAC. If AB = 8 cm, BD = 6 cm and DC = 3cm. The length of the side AC is

a) 6cm 🖉 b) 4 cm c) 3 cm d) 8 cm

5. A straight line has equation 8y = 4x + 21. Which of the following is true ?

- a) The slope is 0.5 and the y intercept is 2.6
- b) The slope is 5 and the y intercept is 1.6
- c) The slope is 0.5 and the y intercept is 1.6
- d) The slope is 5 and the y intercept is 2.6
- 6. $a \cot\theta + b \csc\theta = p$ and $b \cot\theta + a \csc\theta = q$ then $p^2 q^2$ is equal to a) $a^2 - b^2$ b) $b^2 - a^2$ c) $a^2 + b^2$ d) b - a

7. A shuttle cock used for playing badminton has the shape of the combination of

- a) a cylinder and a sphere b) a hemisphere and a cone
- c) a sphere and a cone

d) frustum of a cone and a hemisphere

d)

- 8. The standard deviation of a data is 3. If each value is multiplied by 5 then the new variance waytosuccess.org 13 13 wtsteam100@gmail.com
 - a) 3
- b) 15

- 10-MAT
- The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job 9 is $\frac{1}{2}$ then the value of x is d) 1.5 b) 1 c) 3 a) 2 10. If in triangles ABC and EDF, $\frac{AB}{DE} = \frac{BC}{ED}$ then they will be similar, when - c) ∠B = ∠D b) ∠A = ∠D d) $\angle A = \angle F$ a) $\angle B = \angle E$ 11. A tower is 60m height. Its shadow is x metres shorter when the sun's altitude is 45° than when it has been 30°, then x is equal to b) 43.92m a) 41.92m c) 43m d) 45.6m The straight line given by the equation x = 11 is a) parallel to X axis b) parallel to Y axis c) passing through the origin d) passing through the point (0, 11) 13. If A = $\begin{pmatrix} 1 & 2 & -2 \\ 5 & -4 & 6 \\ -3 & 2 & 9 \end{pmatrix}$, B = $\begin{pmatrix} 1 & 8 \\ 3 & 4 \\ 9 & 6 \end{pmatrix}$, A + B = a) $\begin{pmatrix} 2 & 10 \\ 8 & 0 \\ 6 & 8 \end{pmatrix}$ b) $\begin{pmatrix} 2 & 10 & -2 \\ 8 & 0 & 6 \\ 6 & 8 & 0 \end{pmatrix}$ c) not possible to add d) none of these 14. A cone of height 24 cm is made up of modeling clay. A child reshapes it in the form of a cylinder a same radius as cone. The height of the cylinder is b) 9 cm c) 6 cm d) 12 cm Part - B II. Answer any 10 questions. Q.No. 28 is compulsory: $10 \times 2 = 20$ 15. A relation f : X \rightarrow Y is defined by f(x) = x² - 4 where, x \in {-2, -1, 0, 3} and Y = R. i) List the elements of f ii) Is f a function? 16. A function f is defined by f(x) = 3 - 2x. Find x such that $f(x^2) = (f(x))^2$. 17. Prove that 2" + 6 x 9" is always divisible by 7 for any positive integer n. 18. Find the sum : $3 + 1 + \frac{1}{3} + \dots \infty$ 19. Which rational expression should be subtracted from $\frac{x^2 + 6x + 8}{x^3 + 8}$ to get $\frac{3}{x^2 - 2x + 4}$ 20. The product of Kumaran's age (in years) two years ago and his age four years from now is one more than twice his present age. What is his present age?

- If the total surface area of a cone of radius 7 cm is 704 cm2, then find its slant height. 21
- The line through the points (-2, 6) and (4, 8) is perpendicular to the line through the 22 points (8, 12) and (x, 24) Find the value of x.

cosA sin0 = sec0 - tan0 73 Prove the following identities

24 Find the number of spherical lead shots, each of diameter 6cm that can be made from a solid cuboids of lead having dimensions 24cm x 22 cm x 12 cm

- 25 If n = 5, x = 6, $\sum x^2$ = 765 then calculate the coefficient of variations.
- 26 A and B are two candidates seeking admission to IIT. The probability that A getting selected is 0.5 and the probability that both A and B getting selected is 0.3. Prove that the probability of B being selected is atmost 0.8.
- 27 Find the equation of a straight line perpendicular to the line $y = \frac{1}{12}x 7$ and passing

through the point (7, -1)

- 28 Two vertical poles of heights 6m and 3m are erected above a horizontal ground AC.
- X Find the value of y.

Part - C

 $10 \times 5 = 50$

10-MAT

III. Answer any 10 questions. Q.No. 42 is compulsory: 29. Given A = {1,2,3}, B = {2, 3, 5}, C = {3, 4} and D = {1, 3, 5} check if (A ∩ C) x (B ∩ D) =

(A x B) (C x D) is true?

30. Forensic scientists can determine the height (in cm) of a person based on the length of the thigh bone. They usually do so using the function h(b) = 2.47b+54.10 where b is the length of the thigh bone.

Verify the function h is one - one or not.

- ii) Also find the height of a person if the length of his thigh bone is 50cm.
- iii) Find the length of the thigh bone if the height of a person is 147.96 cm.
- 31. Use Euclid's Division Algorithm to find the Highest Common Factor (HCF) of 396, 504, 636.
- 32. A brick staircase has a total of 30 steps. The bottom step requires 100 bricks. Each successive step requires two bricks less than the previous step.

i) How many bricks are required for the top most step?

- ii) How many bricks are required to build the stair case?
- 38. Solve the following system of linear equations in three variables.

x + y' + z = 5, 2x - y + z = 9, x - 2y + 3z = 16

www.waytosuccess.org

10-MAT

- 34. If α , β are the roots of $7x^2 + ax + 2 = 0$ and if $\beta \alpha = \frac{-13}{7}$. Find the values of a.
- 35. State and prove Baudhayana (Pythagoras) theorem.
- 36. The area of a triangle is 5 sq. units. Two of its vertices are (2, 1) and (3, -2). The third vertex lies on the line y = x + 3. Find the third vertex.
- Find the equation of the median of ∆ABC through C. Where the vertices are A (6,2), B (-5, -1) and C (1, 9)
- 38. The angles of elevation and depression of the top and bottom of a lamp post from the top of a 66m high apartment are 60° and 30° respectively. Find

i) The height of the lamp post.

- ii) The difference between height of the lamp post and the apartment
- iii) The distance between the lamp post and the apartment ($\sqrt{3}$ =1.732)
- 39. A metallic sheet in the form of a sector of a circle of radius 21cm has central angle of 216°. The sector is made into a cone by bringing the bounding radii together. Find the volume of the cone formed.
- 40. The marks scored by the students in a slip test are given below. Find the standard deviation of their marks.

x	4	6	8	10	12
f	7	3	5	9	5

41. If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ show that $A^2 - (a + d) A = (bc - ad)I_2$

42. If two dice are rolled, then find the probability of getting the product of face value 6 or the difference of face values 5.

Part - D

IV. Answer the following questions:

$2 \times 8 = 16$

- 43. a) Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from that point. (OR)
 - b) Construct a triangle △PQR such that QR = 8 cm, ∠P = 30° and the altitude from P to QR is of length 4.8cm.

44. a) Draw the Graph of $y = x^2 - 5x - 6$ and hence solve $x^2 - 5x - 14 = 0$ (OR)

b) A two wheeler parking zone near bus stand charges as below.

Time (in hours) (x)	4	8	12	24
Amount ₹(y) .	60	120	180	360

Check if the amount charged are in direct variation or in inverse variation to the parking time, Graph the data. Also

i) Find the amount to be paid when parking time is 6 hr.

ii) Find the parking duration when the amount paid is with 00@gmail.com