10th Model Public Exam 2022 - 2023 - Mathematics - Answer Key

Part - I

Answer All the questions

 $14 \times 1 = 14$

Q.No	Chapter	Option	Answer	Marks
1	Ex. 1.6 – 4	(B)	2	1
2	Creative 1st Chapter	(C)	2 - 4x	1
3	Ex. 2.10 -7	(D)	11	1
4	Ex. 2.10 –13	(B)	$\frac{1}{27}$	1
5	Ex. 3.20 – 2	(A)	x = 1, y = 2, z = 3	1
6	Creative 3 rd chapter	(C)	ax + b	1
7	Ex. 4.5 – 3	(D)	5√2 cm	1
8	Ex. 4.5 – 10	(A)	90°	1
9	Ex. 5.5 – 4	(C)	9	1
10	Ex. 5.5 – 3	(B)	parallel to Y axis	1
11	Ex. 6.5 – 8	(C)	2	1
12	Creative – 6 th Chapter	(A)	Clinometer	1
13	Ex. 7.5 – 2	(A)	$4\pi r^2$ sq. units	1
14	Ex. 8.5 – 11	(B)	7 10	1

Part - II

Answer any 10 questions. Question No.28 is compulsory

 $10 \times 2 = 20$

Q.No	Chapter	Answer	Marks
15	Ex. 1.1 -	$A \times B = \{(2,1), (2,-4), (-2,1), (-2,-4), (3,1), (3,-4)\}$	1
	1 (i)	$B \times A = \{(1,2), (1,-2), (1,3), (-4,2), (-4,-2), (-4,3)\}$	1
16	Eg.1.22	$f \circ f(k) = f(f(k)) = 4k - 3$	1
10		k = 2	1
17	Ex. 2.2 – 4	$13824 = 2^9 \times 3^3$	1
17		a = 9, b = 3	1
	Eg.2.26	a = 3, d = 3, l = 111,	1
18		$n = \left(\frac{l-a}{d}\right) + 1$	
		n = 37	1
19	Ex. 3.4 – 2 (iii)	$\frac{p(x)}{(x)} = \frac{x^2 + 6x + 8}{x^2 + 6x + 8} = \frac{x + 4}{x + 6x + 8}$	1
		$q(x) = x^2 + x - 2 = x - 1$ $for each dod = x(x) = 0$	
		for excluded $q(x) = 0$	1
		x = 1, -2	

20	Eg.4.8	$\frac{\text{Area} (\Delta ABC)}{\text{Area} (\Delta DEF)} = \frac{BC^2}{EF^2}$ $\text{Area} (\Delta DEF) = 96 \text{ cm}^2$	1 1
21	Theorem	Statement: Let ABC be a triangle and let D, E, F be points on lines BC , CA , AB respectively. Then the cevians AD , BE , CF are concurrent if and only if $\frac{BD}{DC} \times \frac{CE}{EA} \times \frac{AF}{FB} = 1$ where the lengths are directed. This also works for the reciprocal of each of the ratios as the reciporcal of 1 is 1.	2
22	Unit Exercise: 5 th chapter (Q.No:5)	Slope of $AB = \frac{0+1}{4+2} = \frac{1}{6}$, Slope of $CD = \frac{3-2}{3+3} = \frac{1}{6}$ Slope of $AD = \frac{2+1}{-3+2} = \frac{3}{-1} = -3$, Slope of $BC = \frac{0-3}{4-3} = -\frac{3}{1} = -3$ AB & CD are parallel, AD & BC are parallel ABCD is a parallelogram	1
23	Creative 5 th Chapter	$m_1 = \frac{3}{5}$, $m_2 = \frac{-5}{3}$ $m_1 \times m_2 = \frac{3}{5} \times \frac{-5}{3} = -1$ \therefore Two straight lines are perpendicular	1
24	Eg. 6.19	$\tan 30^\circ = \frac{h}{48}$ $\tan 30^\circ = \frac{h}{48}$ height of the tower = $16\sqrt{3} \ m$	1
25	Ex. 7.1 – 1	C.S.A of the cylinder= $2\pi rh$ $sq.$ $units$ $r=25$ cm , $h=35$ cm	1 1
26	Creative 7 th chapter	Base Area = $\pi r^2 = 1386 m^2$ TSA of hemisphere = $3\pi r^2$ TSA of hemisphere = $4158 m^2$	1 1
27	Ex. 8.1 – 7	$\sigma = \sqrt{\frac{n^2 - 1}{12}}; n = 21,$ $\sigma = 6.05$	1
28	Ex. 3.11 - 2 (i)	$a = 2, b = -5, c = 2,$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$ $x = \left\{2, \frac{1}{2}\right\}$	1

10th Model Public Exam 2022 - 2023 - Mathematics - Answer Key

Part – III

Answer any 10 questions. Question No.42 is compulsory

 $10 \times 5 = 50$

Q.No	Chapter	Answer	Marks
29	Ex. 1.4 10 (ii) (iv)	$f(x) = \begin{cases} 6x+1; & -5 \le x < 2 \ ; & x = -5, -4, -3, -2, -1, 0, 1 \\ 5x^2 - 1; & 2 \le x < 6 & ; & x = 2, 3, 4, 5 \\ 3x - 4; & 6 \le x \le 9 & ; & x = 6, 7, 8, 9 \end{cases}$	1
		(i) $f(7) - f(1)$, $x = 7 \Rightarrow f(x) = 3x - 4 = 17$ $x = 1 \Rightarrow f(x) = 6x + 1 = 7$ $\therefore f(7) - f(1) = 17 - 7 = 10$ (ii) $\frac{2f(-2) - f(6)}{f(4) + f(-2)}$, $x = -2$, $f(x) = 6x + 1 = -11$ x = 6, $f(x) = 3x - 4 = 14$	2
		$x = 4, f(x) = 5x^{2} - 1 = 79$ $\frac{2f(-2) - f(6)}{f(4) + f(-2)} = \frac{2(-11) - 14}{79 + (-11)} = \frac{-22 - 14}{79 - 11} = \frac{-36}{68} = -\frac{9}{17}$	2
30	Eg 2.51	$5 + 55 + 555 + \cdots$ to <i>n</i> terms = $5(1 + 11 + \cdots$ to <i>n</i> terms)	1
		$= \frac{5}{9}(9 + 99 + \cdots \text{ to } n \text{ terms})$	1
		$S_n = a \left[\frac{r^{n} - 1}{r - 1} \right]$	1
		$S_n = \frac{50(10^n - 1)}{81} - \frac{5n}{9}$	2
31	Ex. 2.9	$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$	1
	- 6	Required area = $10^2 + 11^2 + \dots + 24^2$	1
		$= (1^2 + 2^2 + \dots + 24^2) - (1^2 + 2^2 + 3^2 + \dots + 9^2)$	1
		Required area = $4615 cm^2$	2
32	Ex. 3.8 - 3 (i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
		12-10+3 $(+)$ $(-)$ 36 $-m$ $+n$	1
		<i>3</i> 6 −30 9	
		(-) (+) (-)	
		0	
		The given polynomial is perfect square	1
		$-m + 30 = 0 \Rightarrow -m = -30 \Rightarrow m = 30$	1
		$n-9=0 \Rightarrow \boldsymbol{n}=9$	1

		1	-	<u> </u>	
33	Eg 3.44	a = 1, b = 7, c = 10			1
		$\alpha + \beta$	$=-\frac{b}{a}=-7$, $\alpha\beta=\frac{c}{a}=$	10	1
		$(i) \alpha^2 + \beta^2 = 29$			1
		(ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{29}{10}$			1
		·	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{-133}{10}$		1
34	Theorem		F		
34	I HEUI EIII	_	Bisector Theorem nent: The internal bis	sector of an	
			of a triangle divides t	N2 16:	2
	ļ	side	internally in the ra	atio of the	
			sponding sides con	taining the	
	ļ	angle.		A B	
		Proof			
		Given	: In $\triangle ABC$, AD is the i	nternal bisector	
		To pro	ove: $\frac{AB}{AC} = \frac{BD}{CD}$		
	ļ		110 02	arough C parallel to AB . Extend AD to	
			line through <i>C</i> at <i>E</i>	nough o paramer to 112. Extend 112 to	
		No.	Statement	Reason	
		1.	$\angle AEC = \angle BAE$	Two parallel lines cut by a transversal	
			= ∠1	make alternate angles equal.	
		2.	ΔACE is isosceles	In $\triangle ACE$, $\angle CAE = \triangle CEA$	
			$AC = CE \dots (1)$		1
		3.	$\Delta ABD \sim \Delta ECD$	By AA similarity	1
			$\frac{AB}{CE} = \frac{BD}{CD}$		
		4.	$\frac{AB}{AC} = \frac{BD}{CD}$	From (1) $AC = CE$	1
			$A\overline{C} - \overline{CD}$	Hence proved.	
35	Ex 4.3	In $\triangle ABC$, $AC^2 = AB^2 + BC^2$ (1)			1
	- 8	In $\triangle ABD$, $AD^2 = AB^2 + BD^2$ (2)			1
		In $\triangle ABE$, $AE^2 = AB^2 + BE^2$ (3)		1	
		$3AC^2 + 5AD^2 = 8AE^2$			2
36	Eg 5.6	Area of the quadrilateral <i>ABCD</i>		2	
	_	_			
		$= \frac{1}{2} \{ (x_1 y_2 + x_2 y_3 + x_3 y_4 + x_4 y_1) - (x_2 y_1 + x_3 y_2 + x_4 y_3 + x_1 y_4) \}$			I
		_		(W2)1 - W3)2 - W4)3 - W1)4/3	
		sq.uni		74717 (WZ)1 1 W3)Z 1 W4)3 1 W1)4)	3

37	Ex. 6.3	C 30° 60°	1
	- 5	In right angle $\triangle ADC$, $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$	1
		$x = \sqrt{3}h$	1
		In right angle \triangle BDC, $\tan 60^{\circ} = \sqrt{3}$	1
		$y = \frac{h}{\sqrt{3}} $ A $y = \frac{h}{60^{\circ}}$ A D B	
		$x + y = AB = \frac{4h}{\sqrt{3}} \text{ m}$	1
38	Eg 7.24	$d = 12 \ cm, r = 6 \ cm,$	1
		Height of the circle portion = 19 cm	
		T.S.A. = CSA of the cylinder	2
		+ CSA of the hemisphere	
		+ Base area of the cylinder $= 2\pi rh + 2\pi r^2 + \pi r^2$	
		$= 2\pi r n + 2\pi r^{2} + \pi r^{2}$ $= 1056 \text{ cm}^{2}$	2
39	Ex. 7.2		1
39	– 10	R = 20, r = 8, h = 16	1
		Volume of frustum = $\frac{1}{3}\pi h(R^2 + r^2 + Rr)$	1
		$= 10459.4 \ cm^3$	1
		Volume of frustum = 10.4594 litres	1
		Required cost = $10.4594 \times 40 \cong \text{₹} 418.38$	1
40	Creative	$\bar{x} = \frac{\sum x}{1}$	
	8 th	$\bar{x} = \frac{\sum x}{n}$ $\bar{x} = \frac{18 + 20 + 15 + 12 + 25}{5} = \frac{90}{5} = 18$	1
	chapter	5 5	
		$x d = x - \bar{x} d^2$	
		18 0 20 2	
		15 -3 9	
		12 -6 36	1
		$ \begin{array}{c cccc} 25 & 7 & 49 \\ \hline & \Sigma d^2 = 98 \end{array} $	
			1
		$\sigma = \sqrt{\frac{\sum d^2}{n}} = \sqrt{\frac{98}{5}} = \sqrt{19.6} = 4.427$	1
		$C.V = \frac{\sigma}{\bar{x}} \times 100\%$	1
		$=\frac{4.427}{18} \times 100$	
		$=\frac{442.7}{18}=24.59$	1
	I	I	

41	Ex. 8.4	Three unbiased coins are tossed,				
71	- 9	$S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$				
		n(S) = 8	1			
		i) Let <i>A</i> be the event of getting atmost 2 tails.				
		$A = \{HHH, HHT, HTH, THH, TTH, HTT, THT\}$				
		n(A) = 7	1			
	$\therefore P(A) = \frac{n(A)}{n(S)} = \frac{7}{8}$					
	ii) Let <i>B</i> be the event of getting atleast two heads,					
		$B = \{HHT, HTH, THH, HHH\}$				
		n(B) = 4				
		$P(B) = \frac{n(B)}{n(S)} = \frac{4}{8}$	1			
		$A \cap B = \{HHH, HHT, HTH, THH\}$				
		$n(A \cap B) = 4$				
		$P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{4}{8}$	1			
		$P(A \cup B) = P(A) + P(B) - P(A \cap B)$				
		$=\frac{7}{8}+\frac{4}{8}-\frac{4}{8}$				
40	Cwaatissa	$P(A \cup B) = \frac{7}{8}$ $A = \{x \in W 0 < x < 5\} = \{1, 2, 3, 4\},$	1			
42	Creative 1st					
	chapter	$B = \{x \in W 0 \le x \le 2\} = \{0, 1, 2\},\$				
		$C = \{x \in W x < 3\} = \{0, 1, 2\}$				
		$B \cap C = \{0, 1, 2\} \cap \{0, 1, 2\} = \{0, 1, 2\}$	1			
		$A \times (B \cap C) = \{1, 2, 3, 4\} \times \{0, 1, 2\}$				
		$= \{(1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2)\}(1)$	1			
		$A \times B = \{1, 2, 3, 4\} \times \{0, 1, 2\}$				
		$= \{(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2)\}$	1			
		$A \times C = \{1, 2, 3, 4\} \times \{0, 1, 2\}$				
		$= \{(1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2)\}$	1			
		$(A \times B) \cap (A \times C)$	1			
		$= \{(1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2)\}$				
		$\cap \{(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2)\}$	1			
		$= \{(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2)\}\dots(2)$	•			
		From (1) and (2), $A \times (B \cap C) = (A \times B) \cap (A \times C)$ is verified.				

10th Model Public Exam 2022 - 2023 - Mathematics - Answer Key

Part - IV

Answer the following questions $2 \times 8 = 16$ Exercise 4.2-12 43 a Rough diagram 2 90 - 40 = 50 6 Fair diagram 5cm 43b Exercise 4.4 - 13 Rough diagram 2 Fair Diagram 8.7 cm 5 10 cm Verification: $PA = \sqrt{0P^2 - 0A^2} = \sqrt{10^2 - 5^2}$ $\simeq 8.7 cm$ 1

