SRI MUTHAIAH MATRIC HR SEC SCHOOL -VAITHEESWARANKOIL.

SRI GURUGNANA SAMBANDAR MISSION

SRI MUTHAIAH MATRIC HR SEC SCHOOL VAITHEESWARANKOIL.

XII-STD PHYSICS BOOK BACK ONE MARK QUESTIONS UNIT-1

1. A glass rod rubbed electrons it has gaine	-	a charge of +8 × 10–1	12C. The number of
=		(c) 2×10^{-8} (lost)	$(d) -8 \times 10^{-12}$ (lost)
2. The electrostatic fo	rce between two po N. Theforce between	oint charges kept at a	distance dapart, in a eparation in vacuum is (d) 2 N
be 100 V m ⁻¹ at a dis	stance?		a point charge. It will
	= =	(c) 4 m	
4. Iwo point cnarges if joining them the election (a) 15 cm from the (ctric field is zero?	(b) 7.5 cm from the	At what point on the line
	charge 4q		
	• .		rallel to the field. It
(a) only a net force (c) both a net force		(b) only a torque (d) neither a net fo	orce nor a torque
6. If a point lies at a dis at this point is propo	-	dpoint of the dipol	e, the electric potential
(a) $1/x^2$	(b) $1/x^3$	(c) $1/x^4$	(d) $1/x^{3/2}$
of a square of side a.	The electric potentia	l at the centre 0 of th	
. , .,		(c) 4 $q/4$ πε $_0$ a	(d) zero
8. Electric potential en			
		(c) $pE \cos \theta$	
			n equipotential surface is
		(c) finite negative	(d) infinite
10. Which of the follow			
		(c) electric field	(d) electric potential
11. The unit of permitt			
		(c) H m ⁻¹	
12. The number of el (a) 1.129 × 10 ¹¹		ce originating from a (c) 6.25 × 10 ¹⁸	

SRI MUTHAIAH	MATRIC HR	SEC SCHOOL	- WAITHFF SWA	PANKOII
DICE LVL(/ L LLI LLI LLI	WIZI LINE LIN	0120 001111111 -	- V Z L L L L L L L L L L	IN Z I LV LN (/ L L

13. The electric field out	tside the plates of t	wo oppositely char	ged plane sheets of charge
density σ is			
$(a)\sigma/2\varepsilon_0$	(b) $-\sigma/2\varepsilon_0$	(c) σ/ϵ_0	(d) zero
14. The capacitance of a	a parallel plate cap	acitor increases fro	m 5 μf to 60 μf when a
dielectric is filled be	tween the plates. The	he dielectric const	ant of the dielectric is
(a) 65	(b) 55	(c) 12	(d) 10
15. A hollow metal ball	carrying an electri	c charge produces	no electric field at points
(a) outside the sphe	re (b) on its sur	face (c) inside	the sphere
(d) at a distance mo	re than twice		
46.4.1		<u>UNIT-2</u>	ml d
16. A charge of 60 C pas the lamp is	ses through an elec	tric lamp in 2 mini	ites. Then the current in
(a) 30 A	(b) 1 A	(c) 0.5 A	(d) 5 A
17. The material throug	ıh which electric ch	arge can flow easil	y is
(a) quartz	(b) mica	(c) germaniur	n (d) copper
18. The current flowing	in a conductor is p	roportional to	
(a) drift velocity	(b) 1/ area of	cross section	(c) 1/no of electrons
(d) square of area of	cross section.		
19. A toaster operating	at 240V has a resis		
(a) 400 W	(b) 2 W		(d) 240 W
20. If the length of a cop	per wire has a cert	ain resistance R, th	en on doubling the length
its specific resistance	2		
(a) will be doubled		(b) will beco	•
(c) will become 4 tim		(d) will rema	
21. When two 2Ω resisto	ances are in paralle	l, the effective resis	stance is
(a) 2Ω	(b) 4Ω	(c) 1 Ω	(d) $0.5~\Omega$
22. In the case of insula	-		-
(a) decreases	• •		nstant (d) become szero
23. If the resistance of a	coil is 2 Ω at 0oc a	$nd \alpha = 0.004 / oC$, th	nen its resistance at
100o C is			
(a) 1.4 Ω	(b) 0 Ω	$(c) 4 \Omega$	
<u> </u>			is passed, the mass of
ions deposited at the	-	_	
(a) current	. , ,	(c) time	(d) resistance
	of equa resistance	s (R) are connect	ed in series, the effective
resistance is	(1) 7 /		(1) 5
(a) n/R	(b) R/n	(c) 1/nR	(d) nR

SR1		" SCHOOL –VAITHEESWARANA N <mark>IT-3</mark>	KOIL.
26. Joule's law of hear		<u> </u>	
(a) $H = I^2Rt$	(b) $H = V^2 Rt$	(c) H = VIt	(d) $H = IR^2t$
	used as the heating elem		
(a) low specific re	esistance	(b) low melting poir	nt
(c) high specific r	esistance	(d) high conductivit	y
28. Peltier coefficient	at a junction of a therm		
(a) the current in	the thermocouple	(b) the time for whi	ch current flows
(c) the temperati	ure of the junction (d) th	he charge that passes throu	gh the thermocouple
29. In a thermocoup	ole, the temperature o	of the cold junction is 20	OoC, the neutral
temperature is 27	⁷ 0°C. The temperature of	finversion is	
(a) 520°C	(b) 540°C	(c) 500°C	(d) 510°C
	wing equations represer		
(a) $dB = \frac{\mu 0}{4\pi} \frac{Idl}{r^2}$	(b) $dB = \frac{\mu 0}{4\pi} \frac{Idlsin\theta}{r^2}$	(c) $dB = \frac{\mu 0}{4\pi} \frac{IdlXr}{r^2}$	(d) $dB = \frac{\mu 0}{4\pi} \frac{IdlXr}{r^3}$
		ng straight conductor pla	
of permeability μ	is		
$(a)\frac{\mu^{0I}}{a}$	$(b)^{\frac{\mu 0I}{a}}$	$(c)\frac{\mu I}{4\pi a}$	$(d)\frac{\mu I}{a}$
		current, the deflection is	
		he same current, the	
(a) 30°			
		rticle inside a cyclotron o	· ·
		-	-
(c) the velocity of	the particle	(b) the charge of the p	particle
		a uniform magnetic field	
(a) the number of	fturns is large	(b) the number of tu	irns is less
(c) the plane of t	he coil is perpendicular t	to the field	
(d) the area of th	e coil is small		
35. Phosphor – bronz	e wire is used for suspen	sion in a moving coil galv	anometer,
because it has			
(a) high conducti	vity	(b) high resistivity	
(c) large couple p	er unit twist	(d) small couple per	unit twist
36. Of the following d	levices, which has small r	resistance?	
(a) moving coil g	alvanometer	(b) ammeter of rang	e 0 – 1A
(c) ammeter of re	ange 0–10 A	(d) voltmeter	
=		ed with S Ω .The effective	-
		owing statements is true	
(a) G is less than		(b) S is less than Ra b	_
(c) Ra is less tha	n both G and S	(d) S is less than both	n G and Ra

SRI MUTHA	AIAH MATRIC HR SEC SCHOO	VL –VAITHEESWARANK	OIL.
38. An ideal voltmeter has			
(a) zero resistance	(b) finite resistance le	ess than G but grea	ter than Zero
(c) resistance greater	than G but less than infin	nity (d) in	finite resistance
	<u>UNIT-4</u>		
39. Electromagnetic induct			
· ·	(b) room heater		
40. A coil of area of cross so		-	-
	field of 0.2 Wb/m².The f		is
(a) 100 Wb	(b) 10 Wb	(c) 1 Wb	(d) zero
41. Lenz's law is in accorda	nce with the law of		
(a) conservation of cha	irges	(b) conservation o	f flux
(c) conservation of mo	mentum	(d) conservation o	of energy
42. The self–inductance of o	a straight conductor is		
(a) zero	(b) infinity	(c) very large	(d) very small
43. The unit henry can also	be written as		
(a) $Vs A^{-1}$	(b) $Wb A^{-1}$	(c) Ω s	(d) all
44. An emf of 12 V is indu	ced when the current	in the coil change	es at the rate of
40A S ⁻¹ . The coefficient o	of self induction of the co	oil is	
(a) 0.3 H	(b) 0.003 H	(c) 30 H	(d) 4.8 H
45. A DC of 5A produces the	e same heating effect as a	an AC of	
(a) 50 A rms current	(b) 5 A peak current	(c) 5A rms current	t (d) none of these
46. Transformer works on			
(a) AC only (b) DC only	v (c) both AC and DC	(d) AC more effect	ively than DC
47. The part of the AC gene	rator that passes the cur	rent from the coil	to the external
circuit is			
(a) field magnet	(b) split rings	(c) slip rings	(d) brushes
48. In an AC circuit the app	lied emf e = Eo sin (ωt + $\pi/2$	2) leads the current	$I = Io \sin(\omega t - \pi/2)$ by
(a) $\pi/2$	(b) $\pi/4$	(c) π	(d) 0
49. Which of the following o	cannot be stepped up in c	a transformer?	
(a) input current	(b) input voltage	(c) input power	(d) all
50. The power loss is less in	transmission lines when	!	
(a) voltage is less but cu	urrent is more	(b) both voltage a	nd current are more
(c) voltage is more but	current is less	(d) both voltage a	and current are less
51. Which of the following o	devices does not allow d.c	c. to pass through?	
(a) resistor	(b) capacitor	(c) inductor	(d) all the above
52. In an ac circuit			
	current is zero (b) the av		-
(c) the average power dis	ssipation is zero. (d) the rn	ns current is $\sqrt{2}$ time (of peak current.

			www.waytosuccess.org
Si	RI MUTHAIAH MATRIC HR S.		ARANKOIL.
53. In an electroma		<u>UNIT-5</u>	
	ally transferred along tl	he electric and maane	tic fields
	nsmitted in a direction p		
	ismitted along electric fi	=	ine ficius
• • •	nsmitted along magnetic		
54. Electromagnetic	5 5	e ficia	
(a) transverse	, waves are	(b) longitudinal	
• •	itudinal or transverse	· · ·	nal nor transverse
	of glass is 1.5. Time tak		
of thickness 10 (ioni jor ingrio de paise om	ough a grado praco
-	(b) 2×10^{-10} s	(c) 5×10^{-8} s	(d) 5×10^{-10} s
	gnetic wave the phase		
magneticfield B	-	,,	,
(a) $\pi/4$	(b) $\pi/2$	(c) π	(d) zero
57. Atomic spectrum			
(a) pure line spe		(b) emission band s	pectrum
(c) absorption li		(d) absorption band	-
	water is introduced bet		-
lens in Newton's	rings system, the ring sy	ystem	-
(a) contracts			st expands, then contracts
59. A beam of mono	chromatic light enters	s from vacuum into a	medium of refractive
index μ. The rati	o of the wavelengths of	the incident and refro	acted waves is
(a) μ: 1	(b) 1 : μ	(c) μ^2 : 1	(d) 1: μ^2
60. I f th e waveleng	yth of the lightis redu	iced to one fourth,	then the amount of
scattering is			
(a) increased by	[,] 16 times	(b) decreas	sed by 16 times
(c) increased by	256 times	(d) decreas	sed by 256 times
61. In Newton's ring	g experiment the radii	of the mth and (m +	+ 4)th dark rings are
respectively 5 m	nm and 7 mm. What is th	he value of m?	
(a) 2	(b) 4	(c) 8	(d) 10
62. The path differe	nce between two monoc	chromatic light waves	of wavelength 4000 Å
is 2×10^{-7} m. Th	ne phase difference betw	een them is	
<i>(a)</i> π	(b) 2π	(c) 32π	(d) $\pi/2$
63. In Young's expen	riment, the third bright	band for wavelength o	of light 6000 Å coincides

with the fourth bright band for another source in the same arrangement. The wave

(c) 5000 Å

(b) 6000 Å

length of the another source is

(a) 4500 Å

(d) 4000 Å

	SRI MU	TTHAIAH MATRIC HR SE	EC SCHOOL –VAITHEESWARI	ANKOIL.
64. A l	light of wavelengt	h 6000 Å is incident i	normally on a grating 0.	005 m wide with 2500
lin	es. Then the maxi	mum order is		
(0	a) 3	(b) 2	(c) 1	(d) 4
65. A	diffraction patterr	n is obtained using a	beam of red light. What	happens if th red light
is	replaced by blue l	ight?		
(a) bands disappear	•	(b) no change	
(c)) diffraction patte	rn becomes narrowe	r and crowded together	
(d)) diffraction patte	rn becomes broader	and farther apart	
66. Th	ne refractive index	of the medium, for t	he polarising angle 60o	is
(0	a) 1.732	(b) 1.414	(c) 1.5	(d) 1.468
		-	<u> </u>	
67. Th	ne cathode rays ar	e		
(0	a) a stream of elec	trons	(b) a stream of posi	tive ions
-			(d) the same as can	=
68. A 1	narrow electron b	eam passes undeviat	ed through an electric f	$ield E = 3 \times 104 V/m$
an	d an overlapping	magnetic field B	$= 2 \times 10 - 3 \text{ Wb/m}^2. \qquad T$	he electron motion,
ele	ectric field and m	agnetic field are mu	tually perpendicular. T	he speed of the
	ectron is			
(a) 60 ms^{-1} (b)	$10.3 \times 10^7 \text{ms}^{-1}$	(c) $1.5 \times 10^7 \text{ms}^{-1}$	(d) $0.67 \times 10^{-7} \text{ms}^{-1}$
	=	's postulates, which	of the following quant	ities take discrete
	lues?			
			(c) angular momentun	n (d) momentum
	=	i of the first three Bo		
•		` *	(c) 1 : 4 : 9	• •
			he minimum energy red	quired to excite the
at	om from ground s	tate of hydrogen ato	m is,	
(0	a) 13.6 eV	(b) 10.2eV	(c) 3.4 eV	(d) 1.89 eV
	<u> </u>	erford atom model,	the spectral lines emitt	ted by an atom is,
((a) line spectrum		(b) continuous spectr	um
((c) continuous abs	corption specturm	(d) band spectrum	
73. En	ergy levels A, B, C	of a certain atom co	rrespond to increasing	values of energy
(i.e	e.,) EA < EB < EC. IJ	$f \lambda 1$, $\lambda 2$, $\lambda 3$ are the w	avelengths of radiations	s corresponding to
Th	e transitions C to	o B, B to A and C to	A respectively, whic	ch of the following
sto	atements is correc	rt.		
	$(a) \lambda_3 = \lambda_1 + \lambda_2$	(b) $\lambda_3 = \lambda_1 \lambda_2 / \lambda_1 + \lambda_2$	(c) $\lambda_1 = \lambda_2 + \lambda_3 = 0$	$(d) \lambda^{2_3} = \lambda^{2_1} + \lambda^{2_2}$
74. Th	ne elliptical orbits	of electron in the ato	m were proposed by	
(a)	J.J.Thomson	(b) Bohr	(c) Sommerfeld	(d) de Broglie

			W	ww.waytosuccess.or
	THAIAH MATRIC HR	SEC SCH	OOL -VAITHEESWARA	INKOIL.
75. X–ray is				
(a) phenomenon o	f conversion of kin	etic ene	ergy into radiation.	
(b) conversion of n	nomentum	(c) co	nversion of energy	into mass
(d) principle of cor	servation of char	ge		
6. In an X-ray tube, t	he intensity of the	emitted	d X–ray beam is $$ in	icreased by
(a) increasing the	filament current	(b) de	creasing the filame	ent current
(c) increasing the t	target potential	(d) de	creasing the target	t potential
7. The energy of a ph	oton of character	istic X-r	ay from a Coolidge	tube comes from
(a) the kinetic ener	rgy of the free elec	trons o	f the target	
(b) the kinetic ener	gy of ions of the t	arget		
(c) the kinetic ener	gy of the striking	electroi	1	
(d) an atomic tran	sition in the targe	t.		
8. A Coolidg e tube o emitted from Cool	-	V. The	maximum freque	ncy of Xradiation
(a) $6 \times 10^{18} \text{Hz}$	(b) 3×10^{18} H	I_Z	(c) $6 \times 10^8 \text{Hz}$	(d) $3 \times 10^8 \text{Hz}$
9. In hydrogen atom, maximum wavelen		wing tr	ansitions produce (a spectral line of
(a) 2> 1	(b) 4> 1		(c) 6> 5	(d) 5>2
D. In hydrogen atom, maximum frequen		wing tr	ansitions produce (a spectral line of
(a) 2> 1	(b) 6> 2		(c) 4> 3	(d) 5>2
l. After pumping pro	cess in laser,			
(a) the number of a in the excited sta	_	d state	is greater than the	e number of atoms
(b) the number of a the ground state		d state	is greater than the	number of atoms in
(c) the number of a excited state.	toms in the groun	d state	is equal to the num	ber atoms in the
(d) No atoms are a	vailable in the exc	ited sta	te.	
2.The chromium ions	s doped in the rub	y rod		
(a) absorbs red light	(b) absorbs green	ligh (c	_	(d) emits green light

83. A photon of frequency v is incident on a metal surface of threshold frequency vo.

84. The work function of a photoelectric material is 3.3 eV. The threshold frequency

will be equal to

(a) $h(v - v_0)$

The kinetic energy of the emitted photoelectron is

(b) hv

(c)
$$5 \times 10^{20} \, Hz$$

(c) $h\nu_0$

(d) 4×10^{14} Hz.

(d) $h(v + v_0)$

SRI MO	UTHAIAH MATRIC HR SEC S	CHOOL -VAITHEESWAR	PANKOIL.	
85. The stopping pot	ential of a metal surface	is independent of		
(a) frequency of incident radiation		(b) intensity of incident radiation		
(c) the nature of the metal surface		(d) velocity of t	the electrons emitted.	
86. At the threshold j	frequency, the velocity of	f the electrons is		
(a) zero	(b) maximum	(c) minimum	(d) infinite	
87. The photoelectric	c effect can be explained	on the basis of		
(a) corpuscular t	heory of light	(b) wave theory	y of light	
(c) electromagne	tic theory of light	(d) quantum th	eory of light	
88. The wavelength o	of the matter wave is ind	lependent of		
(a) mass	(b) velocity	(c) momentum	(d) charge	
89. If the kinetic ener	rgy of the moving partic	le is E, then the de Bi	roglie wavelength is,	
(a) $\lambda = h/\sqrt{2mE}$	(b) $\lambda = \sqrt{2mE/h}$	(c) $\lambda = h\sqrt{2mE}$	(d) $\lambda = h/E\sqrt{2m}$	
90. The momentum o	of the electron having wo	avelength 2Å is		
(a) $3.3 \times 10^{24} kg$	m s ⁻¹	(b) 6.6 × 10 ²⁴ kg (d) 6.6 × 10 ⁻²⁴ l	g m s ⁻¹	
(c) $3.3 \times 10^{-24} kg$	$m s^{-1}$	(d) 6.6×10^{-24} h	kg m s⁻¹	
91. According to rela	tivity, the length of a ro	d in motion		
(a) is same as its	rest length	(b) is more tha	n its rest length	
(c) is less than its rest length				
(d) may be more o	or less than or equal to res	t length depending on	the speed of the rod	
	<u>UNIT</u>	<u>7-8</u>		
92. If 1 kg of a substa	ance is fully converted in	to energy, then the e	energy produced is	
(a) $9 \times 10^{16} J$	(b) $9 \times 10^{24} J$	(c) 1 J	(d) $3 \times 10^8 J$	
93. The nuclear radii	us of 4Be8 nucleus is			
(a) 1.3×10^{-15} m	(b) 2.6×10^{-15} m	(c) $1.3 \times 10^{-13} \text{ m}$	(d) $2.6 \times 10^{-13} m$	
94. The nuclei ₁₃ Al ²⁷ (and ₁₄ Si ²⁸ are example oj	f		
(a) isotopes	(b) isobars	(c) isotones	(d) isomers	
95. The mass defect of	of a certain nucleus is fo	und to be 0.03 amu.	Its binding energy is	
(a) 27.93 eV	(b) 27.93 KeV	(c) 27.93 MeV	(d) 27.93 GeV	
96. Nuclear fission co	an be explained by			
(a) shell model	(b) liquid drop model	(c) quark model	(d) Bohr atom model	
97. The nucleons in a	nucleus are attracted b	у		
(a) gravitational	force (b) electrostatic f	force (c) nuclear forc	ce (d) magnetic force	
98. The ionisation po	wer is maximum for			
(a) neutrons	(b) α – particles	(c) γ – rays (d) β – particles		
99. The half life perio	od of a certain radioactiv	ve element with dis	integration constant	
0.0693 per day is				
(a) 10 days	(b) 14 days	(c) 140 days	(d) 1.4 days	
100. The radio-isotop	pe used in agriculture is			
(a) $_{15}P^{31}$	$(b)_{15}P^{32}$	(c) ₁₁ Na ²³	(d) ₁₁ Na ²⁴	

SRI	MUTHAIAH MATRIC HR SEC	SCHOOL -VAITHEESWA	P.ANKOIL.	
101 . The average ϵ	energy released per fissio	n is		
(a) 200 eV	(b) 200 MeV	(c) 200 meV	(d) 200 GeV	
102. The explosion	of atom bomb is based o	on the principle of		
(a) uncontrolle	d fission reaction	(b) controlled fis	ssion reaction	
(c) fusion reac	tion	(d) thermonucle	ar reaction	
103. Anaemia can	be diagnosed by			
(a) $_{15}P^{31}$	$(b)_{15}P^{32}$	(c) $_{26}Fe^{59}$	(d) $_{11}Na^{24}$	
104. In the nuclear	reaction $_{80}$ Hg 198 + $X \rightarrow$	₇₉ Au ¹⁹⁸ + ₁ H ¹ , X-stand	ds for	
(a) proton	(b) electron	(c) neutron	(d) deutron	
105. In β – decay				
(a) atomic num	ber decreases by one	(b) mass numbe	er decreases by one	
(c) proton num	ber remains the same	(d) neutron nur	nber decreases by one	
106. Isotopes have				
(a) same mass	number but different ato	mic number		
(b) same proto	n number and neutron ni	umber		
(c) same protoi	n number but different ne	eutron number		
(d) same neutro	on number but different _l	proton number		
107. The time take	n by the radioactive elen	nent to reduce to 1/e	e times is	
(a) half life		(c) half life/2	(d) twice the mean life	
	eriod of N^{13} is 10.1 minus			
	es (b) 20.2 minutes			
_	of the same element prod eter. The positive ions ho		aces in a Bainbridge	
(a) same mass	with different velocity	(b) same mass with	same velocity	
(c) different m	ass with same velocity	(d) different mass v	vith different velocity	
	nergy of 26Fe56 nucleus			
(a) 8.8 MeV	(b) 88 MeV	(c) 493 MeV	(d) 41.3 MeV	
111. The ratio of n	uclear density to the den	sity of mercury is ab	out	
(a) 1.3×10^{10}	(b) 1.3	(c) 1.3×10^{13}	(d) 1.3×10^4	
	<u>UN</u>	<u>//T-9</u>		
	s in the atom of an el	ement which deterr	nine its chemical and	
	erties are called			
(a) valence ele	(a) valence electrons (b) revolving electrons			
(c) excess elect	e) excess electrons (d) active electrons			
113. In an N-type	semiconductor, there are	2		
(a) immobile negative ions (b) no minority carriers				
(c) immobile p		,	-	
	aturation current in a PN	-	-	
(a) majority o	carriers (b) minority co	arriers (c) accento	or ions (d) donor ions	

SRI MUTHA	IAH MATRIC HR SEC SC	HOOL –VAITHEESWARAI	VKOIL.	
115. In the forward bias o	characteristic curve,	a diode appears as		
(a) a high resistance	(b) a capacitor	(c) an OFF switch	(d) an ON switch	
116. Avalanche breakdow	yn is primarily depen	dent on the phenome	enon of	
(a) collision	(b) ionization	(c) doping	(d) recombination	
117. The colour of light en	mitted by a LED depe	ends on		
(a) its reverse bias		(b) the amount of	forward current	
(c) its forward bias		(d) type of semicon	nductor material	
118. The emitter base jun	ction of a given tran	sistor is forward bias	ed and its collector	
-base junction is reve	erse biased. If the bas	se current is increase	ed, then its	
(a) V_{CE} will increase (b) Ic will decrease (c) I _C will increase	(d) V_{CC} will increase.	
119. Improper biasing of	a transistor circuit p	roduces		
(a) heavy loading of e	mitter current	(b) distortion in th	e output signal	
(c) excessive heat at co	ollector terminal	(d) faulty location	of load line	
120. An oscillator is				
(a) an amplifier with f	feedback	(b) a convertor of a	ac to dc energy	
(c) nothing but an am	plifier	(d) an amplifier without feedback		
121. In a Colpitt's oscillat	or circuit			
(a) capacitive feedba	ck is used	(b) tapped coil is u	ısed	
(c) no tuned LC circui	t is used	(d) no capacitor is	s used	
122. Since the input impe	dance of an ideal ope	erational amplifier is	infinite,	
(a) its input current i		(b) its output resis		
(c) its output voltage	becomes independen	nt of load resistance		
(d) it becomes a curr	ent controlled device	e		
123. The following arrang	gement performs the	logic function of	_gate	
A			_	
B	Þ			
() (1)		() 11/11/5	(D. 7770 D	
(a) AND	(b) OR	(c) NAND	(d) EXOR	
124. If the output (Y) of the	he following circuit is	s 1, the inputs A B C n	nust be	
A				
В	<u></u>			
	<i>)</i> Y			
(a) 0 1 0	(b) 1 0 0	(c) 1 0 1	(d) 1 1 0	
125. According to the law	rs of Boolean algebra	, the expression (A $+$.	AB) is equal to	
(a) A	(b) AB	(c) B	(d) \bar{A}	
126. The Boolean express	ion ABC can be simp	lified as		
(a) $AB + C$	(b) A . B . C	(c) $AB + BC + CA$	(d)A+B+C	

	(ALL THE BES	T)	
	(b) scanning (c) r		
by the process o	f		
134. Printed docum	ents to be transmitted by fax	are converted	d into electrical signals
(c) that 50 Hz is	the power line frequency in	India	
	handling of higher frequenc		J
•	ker in the picture (d)	to avoid unwa	nted noises in the signals
the picture per s	= -	- 1.5.45 50 40 0	
	dividing each frame into tw	o fields so as t	o transmit 50 views of
	cy carrier waves.	TITEL WUVES	
(a) audio signal	s signal and high frequency ca		equency carrier waves
	l in a radio transmitter prod		aguanau carriar wayas
	ange in the frequency and pl	-	rier wave
•	se and the frequency of the c		
	uency of the carrier wave va		
	se of the carrier wave varies	,	
131. In phase modu			
(c) thrice the sig		(d) four ti	mes the signal frequency
(a) equal to the s	9 , 1 ,		the signal frequency
130. In amplitude m	nodulation, the band width is	3	
(d) modulating	frequency lies in the audio re	ange	
modulating s	ignal		
	le of the carrier varies in acc		the frequency of the
	de of the carrier wave remai	ns constant	
the modulati			, ,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-	de of the carrier wave varies	in accordance	with the amplitude of
129. In amplitude m			
(c) acquire wav	e shaping of the carrier wav	re (d) prod	luce side bands
(b) transmit low	requency information over	· long distance	es efficiently
(a) combine two	waves of different frequenc	ies	
128. The main purp	ose of modulation is to		
		(u) the	curvature of the earth
(a) the ground v (c) ionospheric j	vave propagation		line of sight direction curvature of the earth
127. High frequency	-	(b) th a	ling of sight divestion
127 High Common	<u>UNIT-10</u>		
SRI N	IUTHAIAH MATRIC HR SEC SCHO	OOL –VAITHEESW	VARANKOIL.